Energy and Exergy Analysis and Optimization of a Cogeneration System Based on Solid Oxide Fuel Cell for Residential Applications



It is expected that the ordinary heat and power production systems in residential section are substituted by cogeneration systems in near futur due to higher overall efficiency. Between different cogeneration systems, fuel cell based systems are a suitable choice due to high efficiency, high power density, low emission and noise. In this paper a cogeneration system based on solid oxide fuel cell were examined on energy and exergy basis at first, then using optimization algorithms and a choice of three goal function electric power generation, heat production and minimizing waste Exergy, the operation of the system were optimized. The results included the calculating the working parameters of system with three goal functions and show that the most change of flow exergy is in fuel channel of fuel cell stack and most irreversibilities are due to recovery (38%), catalyst burner (37%) and fuel cell (16%). Among the internal components, air compressor is the biggest power consumer, with (14%) of produced power. Optimization results also show that the minimum exergy destruction is in the electricity production approach, thus using a CHP system is more preferable rather than the single system for producing power or heat.


Main Subjects

[1] دفتر برنامه ریزی کلان برق و انرژی، ترازنامه انرژی سال 1388 وزارت نیرو، معاونت امور برق و انرژی، تهران.
[2] Onovwiona HI, Ugursal VI (2006) Residential cogeneration systems: review of the current technology. Renew Sust Energ Rev 10(5): 389-431.
[3] Chaisantikulwat A, Diaz-Goano C, Meadows ES (2008) Dynamic modelling and control of planar anode-supported solid oxide fuel cell. Comput Chem Eng 32(10): 2365-2381.
[4] Rosen MA, Scott DS (1988) A thermodynamic investigation of the potential for cogeneration for fuel cells. Int J Hydrogen Energ 13: 775-782.
[5] San B, Zhou P, Clealand D (2010) Dynamic modeling of tubular SOFC for marine power System. J Mar Sci Appl 9(3): 231-240.
[6] Lee KH, Strand RK (2008) A system level simulation model of SOFC systems for building applications. in Third National Conference of IBPSA, Berkeley, California, USA.
[7] شهاب روحانی، امیر فرهاد نجفی (1389)، آنالیز ترمودینامیکی سیستم های ترکیبی پیل سوختی اکسید جامد و توربین گازی از طریق اگزرژی، بیست و پنجمین کنفرانس بین المللی برق، تهران، ایران.
[8] محمد علی فرزاد (1390)، مدلسازی یک سیستم تولید همزمان بر پایه پیل سوختی اکسید جامد و فتوولتایک در کاربری مسکونی در شرق ایران، پایان نامه کارشناسی ارشد مکانیک، دانشگاه بیرجند. بیرجند.
[9] محمد علی فرزاد، حسن حسن زاده (1394)، مدلسازی و بهینه سازی یک تک پیل سوختی اکسید جامد صفحه ای مجله مهندسی مکانیک مدرس، جلد 15، شماره 2، صفحات 91-81.
[10] Davidsson S (2011) Life cycle exergy analysis of wind energy systems "Assessing and improving life cycle analysis methodology". M.Sc. Thesis, Uppsala University.
[11] Ertesvag IS (2006) Sensitivity of the chemical exergy for atmospheric gases and gaseous fuels to variations in ambient conditions. Energ Convers Manage 48(7).
[12] O'Hayre RP, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. John Wiley & Sons.
[13] Braun RJ (2002) Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications. Ph.D. Thesis, University of Wisconsin, Mdison.
[14] Peksen M, Peters R, Blum L, Stolten D (2009) Numerical modelling and experimental validation of a planar type pre-reformer in SOFC technology. Int J Hydrogen Energ 34: 6425-6436.
[15] Kang YW, Li J, Cao GY, Tu HY, Li J, Yang J (2009) A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research. J Power Sources 188: 170-176.
[16] Iora P, Aguiar P, Adjiman CS, Brandon NP (2005) Comparison two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60: 2963-2975.
[17] Aguiar P, Adjiman CS, Brandon NP (2005) Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell II. Model-based dynamic performance and control. J Power Sources 147: 136-147.
[18] Colella WG (2003) Design considerations for effective control of an afterburner sub-system in a combined heat and power (CHP) fuel cell system (FCS). J Power Sources 118: 118-128.
[19] Beausoleil-Morrison I, Schatz A, Maréchal F (2006) A model for simulating the thermal and electrical production of small-scale solid-oxide fuel cell cogeneration systems within building simulation programs. HVAC&R Research 12.
[20] gPROMS Model Developer Guide, Process Systems Enterprise, 2011.
[21] gPROMS ModelBuilder Guide, Process Systems Enterprise, 2011.
[22] gPROMS Optimisation Guide, Process Systems Enterprise, 2011.