[1] دفتر برنامه ریزی کلان برق و انرژی، ترازنامه انرژی سال 1388 وزارت نیرو، معاونت امور برق و انرژی، تهران.
[2] Onovwiona HI, Ugursal VI (2006) Residential cogeneration systems: review of the current technology. Renew Sust Energ Rev 10(5): 389-431.
[3] Chaisantikulwat A, Diaz-Goano C, Meadows ES (2008) Dynamic modelling and control of planar anode-supported solid oxide fuel cell. Comput Chem Eng 32(10): 2365-2381.
[4] Rosen MA, Scott DS (1988) A thermodynamic investigation of the potential for cogeneration for fuel cells. Int J Hydrogen Energ 13: 775-782.
[5] San B, Zhou P, Clealand D (2010) Dynamic modeling of tubular SOFC for marine power System. J Mar Sci Appl 9(3): 231-240.
[6] Lee KH, Strand RK (2008) A system level simulation model of SOFC systems for building applications. in Third National Conference of IBPSA, Berkeley, California, USA.
[7] شهاب روحانی، امیر فرهاد نجفی (1389)، آنالیز ترمودینامیکی سیستم های ترکیبی پیل سوختی اکسید جامد و توربین گازی از طریق اگزرژی، بیست و پنجمین کنفرانس بین المللی برق، تهران، ایران.
[8] محمد علی فرزاد (1390)، مدلسازی یک سیستم تولید همزمان بر پایه پیل سوختی اکسید جامد و فتوولتایک در کاربری مسکونی در شرق ایران، پایان نامه کارشناسی ارشد مکانیک، دانشگاه بیرجند. بیرجند.
[9] محمد علی فرزاد، حسن حسن زاده (1394)، مدلسازی و بهینه سازی یک تک پیل سوختی اکسید جامد صفحه ای مجله مهندسی مکانیک مدرس، جلد 15، شماره 2، صفحات 91-81.
[10] Davidsson S (2011) Life cycle exergy analysis of wind energy systems "Assessing and improving life cycle analysis methodology". M.Sc. Thesis, Uppsala University.
[11] Ertesvag IS (2006) Sensitivity of the chemical exergy for atmospheric gases and gaseous fuels to variations in ambient conditions. Energ Convers Manage 48(7).
[12] O'Hayre RP, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. John Wiley & Sons.
[13] Braun RJ (2002) Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications. Ph.D. Thesis, University of Wisconsin, Mdison.
[14] Peksen M, Peters R, Blum L, Stolten D (2009) Numerical modelling and experimental validation of a planar type pre-reformer in SOFC technology. Int J Hydrogen Energ 34: 6425-6436.
[15] Kang YW, Li J, Cao GY, Tu HY, Li J, Yang J (2009) A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research. J Power Sources 188: 170-176.
[16] Iora P, Aguiar P, Adjiman CS, Brandon NP (2005) Comparison two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60: 2963-2975.
[17] Aguiar P, Adjiman CS, Brandon NP (2005) Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell II. Model-based dynamic performance and control. J Power Sources 147: 136-147.
[18] Colella WG (2003) Design considerations for effective control of an afterburner sub-system in a combined heat and power (CHP) fuel cell system (FCS). J Power Sources 118: 118-128.
[19] Beausoleil-Morrison I, Schatz A, Maréchal F (2006) A model for simulating the thermal and electrical production of small-scale solid-oxide fuel cell cogeneration systems within building simulation programs. HVAC&R Research 12.
[20] gPROMS Model Developer Guide, Process Systems Enterprise, 2011.
[21] gPROMS ModelBuilder Guide, Process Systems Enterprise, 2011.
[22] gPROMS Optimisation Guide, Process Systems Enterprise, 2011.