[1] فاتح م م، عابدین زاده شهری م (1394) کنترل فازی تطبیقی بازوی رباتیک سیار. مکانیک سازهها و شارهها 5 17-27.
[2] فاتح م م، کیقبادی ج (1394) کنترل فازی تطبیقی ربات تک چرخ الکتریکی. مکانیک سازهها و شارهها 561-75.
[3] Chen G (1999) Controlling chaos and bifurcations in engineering systems. CRC press.
[4] Kocamaz UE, Uyaroğlu Y, Kizmaz, H (2014) Control of Rabinovich chaotic system using sliding mode control. Int J Adapt Control 28: 1413-1421.
[5] Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64: 1196-1199.
[6] Shinbrot T, Ott E, Grebogi C, Yorke JA (1990) Using chaos to direct trajectories to targets. Phys Rev Lett 65: 3215.
[7] Fang JQ, Hong Y, Qin H, Chen G (2000) Nonlinear control of chaotic systems: A switching manifold approach. Discrete Dyn Nat Soc 4: 257-267.
[8] Ramesh M, Narayanan S (2001) Chaos control of Bonhoeffer–van der Pol oscillator using neural networks. Chaos Soliton Fract 12: 2395-2405.
[9] Chen CW (2014) Applications of neural-network-based fuzzy logic control to a nonlinear time-delay chaotic system. J Vib Control 20: 589-605.
[10] Udawatta L, Watanabe K, Kiguchi K, Izumi K (2002) Fuzzy-chaos hybrid controller for controlling of nonlinear systems. IEEE T Fuzzy Syst 10(3): 401-411.
[11] Hu C, Jiang H (2014) Time-delayed impulsive control of chaotic system based on TS fuzzy model. Math Probl Eng.
[12] Fuh CC, Tung PC (1995) Controlling chaos using differential geometric method. Phys Rev Lett 75: 2952.
[13] Li J, Li W, Li Q (2012) Sliding mode control for uncertain chaotic systems with input nonlinearity. Commun Nonlinear Sci Numer Simul 17(1): 341-348.
[14] Nazzal JM, Natsheh AN (2007) Chaos control using sliding-mode theory. Chaos Soliton Fract 33: 695-70.
[15] Dadras S, Momeni HR, Majd VJ (2009) Sliding mode control for uncertain new chaotic dynamical system. Chaos Soliton Fract 41: 1857-1862.
[16] Guo H, Lin S, Liu J (2006) A radial basis function sliding mode controller for chaotic Lorenz system. Phys Rev Lett 351: 257-261.
[17] Fateh MM, Alfi A, Moradi M, Modarres H (2009) Sliding mode control of lorenz chaotic system on a moving fuzzy surface. EUROCON, IEEE 964-970.
[18] Wang LX (1999) A course in fuzzy systems. Prentice-Hall press, USA.
[19] Chena SW, Yangb YS, Zhang-Jian PZ, Liaob TL, Yan JJ (2013) Synchronization control of uncertain generalized lorenz chaotic system: chattering-free sliding model control. in: Proceedings of the International MultiConference of Engineers and Computer Scientists.
[20] Ha QP, Rye DC, Durrant-Whyte HF (1999) Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35: 607-616.
[21] Li THS, Huang YC (2010) MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inform Sciences 180:4641-4660.
[22] Guo Y, Woo PY (2003) An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE T Syst Man Cy A 33: 149-159.
[23] Mascolo S (1997) Backstepping design for controlling Lorenz chaos, in: IEEE Conference On Decision And Control, Citeseer, 1500-1501.
[24] Al-sawalha MM, Noorani M, Al-Dlalah M (2010) Adaptive anti-synchronization of chaotic systems with fully unknown parameters. Comput Math Appl 59: 3234-3244.