[1] Burgar CG, Lum PS, Shor PC and Van der Loos HFM (2000) Development of robots for rehabilitation therapy. The Palo Alto VA/Stanford experience, J Rehab Res Development 37(6): 663-674.
[2] Bradley D, Marquez C, Hawley M , Brownsell S, Enderby P, Mawson S (2009) NeXOS the design, development, and evaluation of a rehabilitation system for the lower limbs. Mechatronics 19: 247-257.
[3] Moughamir S, Zaytoon J, Manamanni N, Afilal LAM L (2001) A system approach for control development of lower-limbs training machines. Control Eng Practice 10(3): 287-299.
[4] Ju MS, Lin CCK, Lin DH, Hwang IS and Chen SM (2005) A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot. IEEE Trans Neural Syst Rehab Eng 13(3): 349-358.
[5] Akdogan E , Arif Adli M (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 21: 509-522.
[6] Houglum PA (2009) Therapeutic exercises for musculoskeletal injuries. ThomsonShore.
[7] Bernhardt M, Frey M, Colombo G, Riener R (2005) Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT. In 9th International Conference on Rehabilitation Robotics, ICORR2005 (536-539).
[8] Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot aided neurorehabilitation. IEEE Trans Rehab Eng 6(1): 75-87.
[9] Richardson R, Brown M, Bhakta M, Levesley M.C (2003) Design and control of a three degree of freedom pneumatic physiotherapy robot. Robotica 21: 589-604.
[10] Hogan N, Krebs HI, Sharon A, and Charnnarong J (1995) Interactive robotic therapist. Massachusetts Inst Technol, Cambridge, U.S. Patent #5 466 213.
[11] Tsuji T, Tanaka Y (2005) On-line learning of robot arm impedance using neural networks. Robot Auton Syst, 52: 257-271.
[12] Seul J, Hsia TC, Bonitz RG (2004) Force tracking Impedance control of robot manipulators under unknown envierment. IEEE Trans Control Syst Technol 12: 474-483.
[13] Stanisic RZ, Fernandez AV (2012) Adjusting the Parameters of the mechanical impedance for Velocity, impact and force control. Robotica 30: 583-597.
[14] Kizir S, bingul Z (2013) Fuzzy impedance and force control of a Stewart platform. Turk J Elec Eng & Comp Sci 22(4): 924.
[15] Xu G, Song A, Li H (2011) Control system design for an upper-limb rehabilitation robot. Advanced Robotics 25: 229-251.
[16] Xu G, Song A, Li H (2011) Adaptive Impedance Control for Upper-Limb Rehabilitation Robot Using Evolutionary Dynamic Recurrent Fuzzy Neural Network. J Intel Robot System 62: 501-525.
[17] Huanga L, Geb S.S, Leeb T.H (2003) Fuzzy unidirectional force control of constrained robotic manipulators. Fuzzy Sets and Systems 134: 135–146.
[18] Surdilovic D, Cojbasic Z (1999) Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. International Conference on Robotics & Automation Detroit, Michigan.
[19] Fateh MM (2008) On the voltage-based control of robot manipulators. Int J Control, Automation, and Systems 6(5): 702-712.
[20] Fateh MM, Babaghasabha R (2013) Impedance control of robots using voltage control strategy. Nonlinear Dynamics 74(1-2): 277-286.
[21] Wang LX (1996) A course in fuzzy systems and control. Prentice-Hall, New York.
[22] Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modelling and control. John Wiley & Sons, New York.
[23] Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York.
[24] Qu Z, Dawson DM (1996) Robust tracking control of robot manipulators, IEEE Press, Inc., New York.
[25] Fateh MM (2012) Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dynamics 67(2): 1525-1537.