شبیه سازی عددی جریان اختلاطی آرام با استفاده از توسعه‌ی الگوریتم تراکم‌پذیر جدید

نوع مقاله : مقاله مستقل

نویسندگان

دانشگاه صنعتی شریف

چکیده

روش ایدهآل برای تحلیل جریانهای با جابجایی آزاد، استفاده از تقریب بوزینسک در محاسبه اثرات تغییر دانسیته می باشد. اعتبار این تقریب بیشتر در مواردی است که تغییرات دانسیته ناچیز می باشد و در جریانهای جابجایی آزاد با تراکم پذیری بالا استفاده از این تقریب منجر به خطاهای زیادی در محاسبه خواص جریان و نرخ انتقال حرارت می گردد. در این تحقیق، جریان جابجایی آزاد همراه با اختلاط دو گاز اکسیژن و نیتروژن در حالت آرام، غیردائم و تراکم‌پذیر در یک چاله مربعی مورد بررسی قرار گرفته است. معادلات پیوستگی، ممنتوم، انرژی و جرم اجزاء شیمیایی با روش حجم محدود، گسسته‌سازی شده و سپس با استفاده از یک روش جدید برمبنای الگوریتم سیمپل حل عددی گردید. با این روش جدید، الگوریتم مورد نظر، قابلیت حل جریانهای جابجایی آزاد را در هر دو محدوده بوزینسک و غیربوزینسک، می یابد. سیالها، گاز ایده آل فرض شده اند به‌ طوری که خواص سیال تابعی از رابطه‌ی ساترلند می‌باشد. نتایج بدست آمده با کارهای دیگر پژوهشگران مقایسه شده و به صورت رضایت‌بخشی مورد تایید قرار گرفته است. برای بررسی دقت الگوریتم جدید، نتایج برای حفره مربعی در عدد رایلی 106 ارائه شده است. نتایج نشان دهنده‌ی صحت الگوریتم جدید تراکم‌پذیر در جریان های غیردائم اختلاطی می‌باشد.

کلیدواژه‌ها


[1] Lessani B, and Papalexandris MV (2006) Time-accurate calculation of variable density flows with strong temperature gradients and combustion. J Comput. Phys 212: 218–246.
[2] Venkateswaran S, Merkle L (1999) Analysis of preconditioning methods for the Euler and Navier–Stokes equations. Von Karman Lecture Series: 1999–03.
[3] Chenoweth DR and Paolucci S (1986) Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J Fluid Mech: 173–210.
[4] Darbandi M and Hosseinizadeh SF (2006) Numerical simulation of thermobuoyant flow with large temperature variation. J Thermophys Heat Transfer: 285–296.
[5] Darbandi M and Hosseinizadeh SF (2007) Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm. Numer Heat Tr, Part A 52: 849–873.
[6] Ibrahim A and Lemonnier D (2009) Numerical study of coupled double-diffusive natural convection and radiation in a square cavity filled with a N2-CO2 mixture. Int Commun Heat Mass 36: 197–202.
[7] Ebrahimi Kebria HR, Darbandi M, Hosseinizadeh SF (2011) Numerical simulation of low Mach number laminar reacting and non-reacting flow using a novel dual purpose algorithm. Numerical Heat Transfer, Part A, 59: 595–514.
[8] Versteeg HK and Malalasekera W (1995) An introduction to computational fluid dynamics, the finite volume method. Longman, Malaysia.
[9] Patankar, SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer: 1787–1806.
[10] Paillere, H, Le Quere P, Weisman C, Vierendeels J, Dick E, Braack M, Dabbene F, Beccantini A, Studer E, Kloczko T, Corre C, Darbandi M, Hosseinizadeh SF (2005) Modeling of natural convection flow with large temperature differences: A benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference, ESAIM: Mathematical Modeling and Numerical Analysis: 617–621.
[11] De Vahl Davis G (1983) Natural convection of air in a square cavity: A bench mark numerical solution. Int J for Nume. Methods in Fluids: 249–264.