Numerical and Experimental study of a vibro- impact bistable piezoelectric cantilever beam energy harvester

Authors

1 Mechanical engineering, Semnan university, Semnan, Iran

2 Faculty of Department of Solid Design and Applied Design, School of Mechanical Engineering

3 Assoc. Prof., Modal Analysis (MA) Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Iran.

10.22044/jsfm.2025.14951.3883

Abstract

In this paper, in order to increase the frequency bandwidth, a bistable unimorph piezoelectric cantilever beam energy harvester is equipped with a unilateral barrier to limit the oscillation amplitude. This novel design is recognized as a bistable vibro-impact energy harvester. The main objective of this work is to investigate the effects of vibro-impact behavior on the frequency bandwidth of a typical bistable energy harvester. Initially, by employing Euler-Bernoulli beam assumption and energy method, the governing equations of motion were derived. Subsequently, by numerically solving the governing equations, the frequency bandwidth and harvested power of the system in both typical bistable and vibro- impact bistable systems were compared. According to the obtained results, it was clear by exploiting the vibro- impact behavior, the frequency bandwidth of a typical bistable energy harvester could be increased up to 90%. Then, the effects of initial gap between barrier and cantilever beam on the system's frequency bandwidth were investigated. In this study, some experiments were conducted to evaluate the efficiency of the proposed model and to validate the obtained results.

Keywords

Main Subjects


[1] Minnemann Kuhnert W, Cammarano A, Silveira M, Paupitz Gonçalves PJ. Optimum design of electromechanical vibration isolators. J. Vibration and Control 2020;27:169–84.
[2] Panda S, Hajra S, Mistewicz K, In-na P, Sahu M, Rajaitha PM, et al. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 2022;100:107514.
[3] Zhang L, Zhang F, Qin Z, Han Q, Wang T, Chu F. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 2022;238:121770.
[4] Kazmierski TJ, Beeby S. Energy harvesting systems. Principles, Modeling and Applications; Springer Science+ Business Media LLC: New York, NY, USA 2011.
[5] Farhangdoust S, Mehrabi A, Younesian D. Bistable wind-induced vibration energy harvester for self-powered wireless sensors in smart bridge monitoring systems. Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XIII, vol. 10971, International Society for Optics and Photonics; 2019, p. 109710C.
[6] Fu H, Mei X, Yurchenko D, Zhou S, Theodossiades S, Nakano K, et al. Rotational energy harvesting for self-powered sensing. Joule 2021;5:1074–118.
[7] Jiang Q, Yu C, Zhou Y, Zhao Z, Gao Q, Sun B. Modeling and analysis of beam-spring magnetically coupled bistable energy harvester for broadband vibration energy harvesting. J. Sound and Vibration 2024;579:118373.
[8] Norenberg JP, Luo R, Lopes VG, Peterson JVLL, Cunha A. Nonlinear dynamics of asymmetric bistable energy harvesters. International J. Mechanical Sciences 2023;257:108542.
[9] Zheng X, He L, Wang S, Liu X, Liu R, Cheng G. A review of piezoelectric energy harvesters for harvesting wind energy. Sensors and Actuators A: Physical 2023;352:114190.
]10[ حسینی را، لطافتی م، حسینی مقدم س. برداشت انرژی ارتعاشی با استفاده از تیر یک سردرگیر با دولایه پیزوالکتریک. مکانیک سازه ها و شاره‌ها 2017;7:1–9.
]11[ حسینی را، ابراهیمی ممقانی ع، نوری م. بررسی تجربی اثر کاهش عرض تیر بر بازده برداشت‌کننده انرژی ارتعاشی پیزوپلیمری. مکانیک سازه‌ها و شاره‌ها 2017;7:41–51.
]12[ حسینی را، فاتحی ناراب ه. بررسی تجربی برداشت انرژی از راه رفتن انسان. مکانیک سازه ها و شاره‌ها 2017;7:173–81.
[13] Twiefel J, Westermann H. Survey on broadband techniques for vibration energy harvesting. J. Intelligent Material Systems and Structures 2013;24:1291–302.
[14] Pellegrini SP, Tolou N, Schenk M, Herder JL. Bistable vibration energy harvesters: A review. J. Intelligent Material Systems and Structures 2012;24:1303–12.
[15] Wang S, Li Z, Zhang H, Fang S, Yurchenko D, Zhou S. Analytical and experimental investigation of a flexible bistable energy harvester in rotational environment. Nonlinear Dynamics 2023;111:16851–73.
[16] Tabak A, Safaei B, Memarzadeh A, Arman S, Kizilors C. An Extensive Review of Piezoelectric Energy-Harvesting Structures Utilizing Auxetic Materials. J. Vibration Engineering & Technologies 2024;12:3155–92.
[17] Wakshume DG, Płaczek MŁ. Optimizing Piezoelectric Energy Harvesting from Mechanical Vibration for Electrical Efficiency: A Comprehensive Review. Electronics 2024;13.
[18] Shi X, Sun Y, Li D, Liu H, Xie W, Luo X. Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication. J. Materials Science: Materials in Electronics 2023;34:220.
[19] Hosseini R, Hamedi M. Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromechanics and Microengineering 2015;25:125008.
[20] Rezaei M, Talebitooti R, Liao W-H. Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches. Energy 2022;239:122376.
[21] Priya S, Song H-C, Zhou Y, Varghese R, Chopra A, Kim S-G, et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems 2017;4:3–39.
[22] Chen K, Gao F, Liu Z, Liao W-H. A nonlinear M-shaped tri-directional piezoelectric energy harvester. Smart Materials and Structures 2021;30:45017.
[23] Hosseini R, Hamedi M, Im J, Kim J, Dayou J. Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int. J. Precision Engineering and Manufacturing 2017;18:415–24.
[24] Erturk A, Hoffmann J, Inman DJ. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters 2009;94:254102.
[25] Shahruz SM. Increasing the Efficiency of Energy Scavengers by Magnets. J. Computational and Nonlinear Dynamics 2008;3.
[26] Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena 2010;239:640–53.
[27] Tang L, Yang Y, Soh C-K. Improving functionality of vibration energy harvesters using magnets. J. Intelligent Material Systems and Structures 2012;23:1433–49.
[28] Firoozy P, Khadem SE, Pourkiaee SM. Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Engineering Science 2017;111:113–33.
[29] Lee AJ, Inman DJ. A multifunctional bistable laminate: Snap-through morphing enabled by broadband energy harvesting. J. Intelligent Material Systems and Structures 2018;29:2528–43.
[30] Litak G, Margielewicz J, Gąska D, Wolszczak P, Zhou S. Multiple Solutions of the Tristable Energy Harvester. Energies  2021;14.
[31] Abedini A, Onsorynezhad S, Wang F. Study of an impact driven frequency up-conversion piezoelectric harvester. Dynamic Systems and Control Conference, vol. 58295, American Society of Mechanical Engineers; 2017, p. V003T41A005.
[32] erayatifar M, Tahani M, Moeenfard H. Nonlinear analysis of functionally graded piezoelectric energy harvesters. Composite Structures 2017;182:199–208.
[33] Khaghanifard J, Askari AR, Taghizadeh M, Awrejcewicz J, Folkow PD. Nonlinear modelling of unimorph and bimorph magneto-electro-elastic energy harvesters. Applied Mathematical Modelling 2023;119:803–30.
[34] Wu Y, Badel A, Formosa F, Liu W, Agbossou A. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches. J. Intelligent Material Systems and Structures 2014;25:1658–63.
 
[35] Ai R, Monteiro LLS, Monteiro PC, Pacheco PMCL, Savi MA. Piezoelectric vibration-based energy harvesting enhancement exploiting nonsmoothness. Actuators, vol. 8, Multidisciplinary Digital Publishing Institute; 2019, p. 25.
[36] Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR. A wideband vibration-based energy harvester. J. Micromechanics and Microengineering 2008;18:115021.
[37] Abedini A, Wang F. Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact. The European Physical J. Special Topics 2019;228:1459–74.
[38] Cao D-X, Xia W, Guo X-Y, Lai S-K. Modeling and experiment of vibro-impact vibration energy harvester based on a partial interlayer-separated piezoelectric beam. J. Intelligent Material Systems and Structures 2020;32:817–31.
[39] Shahsavar M, Ashory MR, Khatibi MM. Increasing the efficiency of a bistable cantilever beam energy harvester exploiting vibro-impact effects. J. Intelligent Material Systems and Structures 2022:1045389X221115703.
[40] Dechant E, Fedulov F, Chashin D V, Fetisov LY, Fetisov YK, Shamonin M. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Materials and Structures 2017;26:65021.
[41] Liang J-W, Feeny BF. Balancing energy to estimate damping parameters in forced oscillators. J. Sound and Vibration 2006;295:988–98.
[42] Li X, Li Z, Huang H, Wu Z, Huang Z, Mao H, et al. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results in Physics 2020;18:103173.