[1] Khalili SMR, Eslami Farsani R, Dastmard A, Saeedi A (2015) Experimental investigation of creep behavior in Phenolic based polymer composites. J. of Sci Technol Compos 1 (2): pp. 37-42.
[2] Tuttle ME, Brinson HF 1986 Prediction of the long-term creep compliance of general composite laminates. Exp Mech 26(1): 89–102.
[3] Schaffer BG, Adams DF (1981) Nonlinear Viscoelastic Analysis of a Unidirectional Composite Material. J Appl Mech 48(4): 859–865.
[4] Aboudi J (1990) Micromechanical characterization of the non-linear viscoelastic behavior of resin matrix composites. Compos Sci Technol 38(4): 371–386.
[5] Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4): 295–310.
[6] Haj-Ali RM, Muliana AH (2004) A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int J Solids Struct 41(13): 3461–3490.
[7] Zaoutsos SP, Papanicolaou GC (2010) On the influence of preloading in the nonlinear viscoelastic–viscoplastic response of carbon–epoxy composites. Compos Sci Technol 70(6): 922–929.
[8] Darvizeh A, Ansari R, Mahmoudi MJ, Hassanzadeh MK (2016) Investigation of interphase effect on the non-linear viscoelastic behavior of multiphase polymer composites. Modares Mech Eng 16(1): 181–191 (In persion).
[9] Rafiee R, Mazhari B (2016) Modeling creep in long fiber reinforced laminated composites using micromechanical rules. J Sci Technol Compos 3(4): 409–418.
[10] Pasricha A, Turtle ME, Emery AF (1996) Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading,” Compos Sci Technol 56(1): 55–62.
[11] Papanicolaou GC, Zaoutsos SP, Cardon AH (1999) Further development of a data reduction method for the nonlinear viscoelastic characterization of FRPs. Compos part A Appl Sci Manuf 30(7): 839–848.
[12] Papanicolaou GC, Zaoutsos SP, Kontou EA, (2004) Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behavior. Compos Sci Technol 64(16): 2535–2545.
[13] Huang B, Kim HS, Wang J, Du J, Guo Y (2016) Time-dependent stress variations in symmetrically viscoelastic composite laminates under uniaxial tensile load. Compos Struct 142: 278–285.
[14] Galuppi L, Royer-Carfagni G (2012) Laminated beams with viscoelastic interlayer. Int J Solids Struct 49(18): 2637–2645.
[15] Yang J, Xiong J, Ma L, Wang B, Zhang G,Wu L (2013) Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Compos Struct 106: 570–580.
[16] Joshi N, Muliana A (2010) Deformation in viscoelastic sandwich composites subject to moisture diffusion. Compos Struct 92(2): 254–264.
[17] Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2(6): 647–650.
[18] Seidel GD, Lagoudas DC, Mortazavi B, Bardon J, Ahzi S., (2009) A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J Compos Mater 43(9): 917–941.
[19] Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 68(6): 1502–1512.
[20] Yao Y., Chen S., and Chen P., 2013 “The effect of a graded interphase on the mechanism of stress transfer in a fiber-reinforced composite,” Mech. Mater., vol. 58, pp. 35–54,.
[21] Jiang Y, Guo W, Yang H (2008) Numerical studies on the effective shear modulus of particle reinforced composites with an inhomogeneous inter-phase. Comput Mater Sci 43(4): 724–731.
[22] Boutaleb S. et al. (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46(7-8): 1716–1726.
[23] Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer (Guildf) 46(2): 553–562.
[24] Falahatgar SR., Salehi M, Aghdam MM (2009) Nonlinear viscoelastic response of unidirectional fiber-reinforced composites in off-axis loading. J Reinf Plast Compos 28(15): 1793–1811.
[25] Sayyidmousavi A, Bougherara H, Falahatgar SR, Fawaz Z (2014) A 3D micromechanical energy-based creep failure criterion for high-temperature polymer-matrix composites. J Reinf Plast Compos 33(4): 380–388.
[26] Sayyidmousavi A, Bougherara H, Falahatgar SR, Fawaz Z (2015) Thermomechanical viscoelastic response of a unidirectional graphite/polyimide composite at elevated temperatures using a micromechanical approach. J. Compos Mater 49(5):519–534.
[27] Aboudi J (1982) A continuum theory for fiber-reinforced elastic-viscoplastic composites. Int J Eng Sci 20(5): 605–621.
[28] Aboudi J, Pindera MJ, Arnold SM (1999) Higher-order theory for functionally graded materials. Compos Part B Eng 30(8): 777–832.
[29] Muliana AH (2004) Integrated micromechanical-structural framework for the nonlinear viscoelastic behavior of laminated and pultruded composite materials and structures. Ph.D. Thesis, Georgia Institute of Technology.
[30] Haj‐Ali RM, Muliana AH (2001) Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int J Numer Methods Eng 59(1): 25–45.
[31] Haj-Ali RM, Muliana AH (2004) A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int J Solids Struct 41(13): 3461–3490.
[32] Lai J, Bakker A (1996) 3-D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput Mech 18(3): 182–191.
[33] Harris B (1999) Engineering composite materials. IOM, London.
[34] Aghdam MM, Dezhsetan A (2005) Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos Struct 71(3): 327–332.
[35] Aboudi J., Arnold S. M., and Bednarcyk B. A., Micromechanics of composite materials: a generalized multiscale analysis approach. Butterworth-Heinemann, 2013.
[36] Aboudi J., “Micromechanical analysis of composites by the method of cells,” 1989.
[37] Aboudi J., “Closed form constitutive equations for metal matrix composites,” Int. J. Eng. Sci., vol. 25, no. 9, pp. 1229–1240, 1987.
[38] Haj-Ali R. and Aboudi J., “Nonlinear micromechanical formulation of the high fidelity generalized method of cells,” Int. J. Solids Struct., vol. 46, no. 13, pp. 2577–2592, 2009.
[39] Bednarcyk BA, Arnold SM (2002) Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int J Solids Struct 39(7): 1987–2017.
[40] Mahmoodi MJ, Aghdam MM, Shakeri M (2010) The effects of interfacial debonding on the elastoplastic response of unidirectional silicon carbide-titanium composites. Proc Inst Mech Eng Part C J Mech Eng Sci 224(2): 259–269.
[41] Mahmoodi MJ, Hassanzadeh-Aghdam MK (2015) Effects of interphase damage on the elastoviscoplastic behavior of general unidirectional metal matrix composites. Modares Mech Eng 15(3): 95–105. (In persion)
[42] Sayyidmousavi A, Bougherara H, Fawaz Z (2015) The role of viscoelasticity on the fatigue of angle-ply polymer matrix composites at high and room temperatures- A micromechanical approach. Appl Compos Mater 22(3): 307–321.
[43] Sun L, Gibson RF, Gordaninejad F (2011) Multiscale analysis of stiffness and fracture of nanoparticle-reinforced composites using micromechanics and global–local finite element models. Eng Fract Mech 78(15): 2645–2662.