بررسی عددی تاثیر شکل محفظه خنک کننده حاوی ماده تغییر فاز دهنده پارافین بر عملکرد پنل های خورشیدی

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار، گروه مهندسی مکانیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 دانش آموخته مقطع کارشناسی ارشد، ، گروه مهندسی مکانیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

10.22044/jsfm.2025.14245.3843

چکیده

امروزه با توجه به اهمیت بالای انرژی و محدودیت‌های سوخت فسیلی، استفاده از انرژی‌های تجدید‌پذیر اهمیت فراوانی پیدا نموده است. با توجه به این‌که در پنل‌های خورشیدی با افزایش دما راندمان کاهش پیدا می‌کند اهمیت خنک‌سازی پنل‌ها لازم و مهم می باشد. بر این اساس با توجه به تحقیق‌های انجام شده قبلی در حوزه استفاده از مواد تغییر فاز دهنده به‌عنوان روش خنک سازی پنل‌های خورشیدی، عملکرد خنک سازی ماده PureTemp29 به‌عنوان ماده تغییر فاز دهنده در هندسه‌های مختلف که تا کنون عملکرد ترکیب این بررسی نشده است تحقیق گردد. شبیه‌سازی انجام شده به روش المان محدود در نرم‌افزار انسیسAPDL انجام گرفت. محفظه‌ها با هندسه‌های ساده و پره‌دار در حالت‌های دو‌بعدی و سه‌بعدی مشخص شدند. نتایج نشان داد که بازده‌ی محفظه پره‌دار از سایر محفظه‌ها به‌دلیل توزیع دمای مناسب در قسمت‌های مختلف ماده تغییر فاز دهنده بهتر می‌باشد. به‌منظور اعتبار‌سنجی خروجی‌های دما در زمان‌های مختلف در هندسه پره دار با یک پژوهش تجربی قبلی مقایسه گردید و مشخص شد که شبیه‌سازی از دقت خوبی برخوردار می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Jawad, M., (2023) Insinuation of Arrhenius Energy and Solar Radiation on Electrical Conducting Williamson Nano Fluids Flow with Swimming Microorganism: Completion of Buongiorno's Model. East European Journal of Physics, p. 135-145.
[2]  Sharma, B.K., et al., (2023) Entropy generation and thermal radiation analysis of EMHD Jeffrey nanofluid flow: Applications in solar energy. Nanomaterials. 13(3): p. 544.
[3]  Jeelani, M.B. and A. Abbas, (2023) Al2O3-Cu\Ethylene glycol-based magnetohydrodynamic non-Newtonian Maxwell hybrid nanofluid flow with suction effects in a porous space: energy saving by solar radiation. Symmetry. 15(9): p. 1794.
[4]  Ullah, M.I., et al., (2023) A fractional approach to solar heating model using extended ODE system. Alexandria Engineering Journal. 81: p. 405-418.
[5]  Jalili, B., et al., (2023) Squeezing flow of Casson fluid between two circular plates under the impact of solar radiation. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: p. e202200455.
[6]  Obalalu, A., et al., (2023) Two-Phase Numerical Simulation for the Heat and Mass Transfer Evaluation Across a Vertical Deformable Sheet with Significant Impact of Solar Radiation and Heat Source/Sink. Arabian Journal for Science and Engineering: p. 1-19.
[7]  Abbas, A., et al., (2023) Numerical simulation of variable density and magnetohydrodynamics effects on heat generating and dissipating Williamson Sakiadis flow in a porous space: Impact of solar radiation and Joule heating. Heliyon. 9(11).
[8]  Dawar, A., et al., (2023) MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect. Journal of Petroleum Science and Engineering. 220: p. 111148.
[9]  Sharma, B.K., et al., (2023) Computational analysis of melting radiative heat transfer for solar Riga trough collectors of Jeffrey hybrid-nanofluid flow: a new stochastic approach. Case Studies in Thermal Engineering. 52: p. 103658.
[10] Hussain, S.M., et al., (2023) Chemical reaction and thermal characteristiecs of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno's model. Energy & Environment. 34(5): p. 1409-1432.
[11] Muto, Y., C. Kojima, and Y. Okura, (2023) Mathematical modeling of road heating system with underground distribution line based on nonlinear ODE model. Nonlinear Theory and Its Applications, IEICE. 14(2): p. 378-402.
[12] El-dawy, H., M.F. El-Amin, and Z.A. Raizah, (2023) Joule Heating and Viscous Dissipation Effects on a Stretching/Shrinking Cannel Filled by Micropolar Hybrid Nanofluid in Presence Thermal/Solar Radiation. Journal of Nanofluids. 12(3): p. 738-744.
[13] Jalili, P., et al., (2023) Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium. Results in Physics. 48: p. 106371.
[14] Ho, C., C.-C. Chen, and W.-M. Yan, (2016) Experimental and numerical study on transient thermal energy storage of microencapsulated phase change material particles in an enclosure. Int. J. Heat Mass Transfer,. 94: p. 191-198.
[15] Ho, C., W.-L. Chou, and C.-M. Lai, (2016) Thermal and electrical performances of a water-surface floating PV integrated with double water-saturated MEPCM layers. Applied Thermal Engineering. 94: p. 122-132.
[16] Ho, C., et al., (2013) Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM. Energy and buildings. 67: p. 322-333.
[17] Ho, C.-J., A. Tanuwijava, and C.-M. Lai, (2012)Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer. Energy and Buildings. 50: p. 331-338.
[18] Sharma, S., et al., (2016) Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material. Solar Energy Materials and Solar Cells. 149: p. 29-39.
[19] Hasan, A., et al., (2015) Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy. 115: p. 264-276.
[20] Maiti, S., et al., (2011) Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Solar energy. 85(9): p. 1805-1816.
[21] Aelenei, L., et al., (2014) Building Integrated Photovoltaic System with integral thermal storage: a case study. Energy Procedia. 58: p. 172-178.
[22] Aelenei, L., et al., (2014) Thermal performance of a hybrid BIPV-PCM: modeling, design and experimental investigation. Energy Procedia. 48: p. 474-483.
[23] Park, J., T. Kim, and S.-B. Leigh, (2014) Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Solar Energy. 105: p. 561-574.
[24] Brano, V.L., et al., (2014) Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: description and experimental validation. Renewable Energy. 68: p. 181-193.
[25] Biwole, P.H., P. Eclache, and F. Kuznik, (2013) Phase-change materials to improve solar panel's performance. Energy and Buildings, 2013. 62: p. 59-67.
[26] Hasan, A., et al., (2010) Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy. 84(9): p. 1601-1612.
[27] Huang, M., P. Eames, and B. Norton, (2006) Comparison of a small-scale 3D PCM thermal control model with a validated 2D PCM thermal control model. Solar energy materials and solar cells, 2006. 90(13): p. 1961-1972.
[28] Huang, M., P. Eames, and B. Norton, (2006) Phase change materials for limiting temperature rise in building integrated photovoltaics. Solar energy. 80(9): p. 1121-1130.
[29] Huang, M., P. Eames, and B. Norton, (2004) Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of heat and mass transfer. 47(12-13): p. 2715-2733.
[30] Hausler, T. and H. Rogaß. (2020) Latent heat storage on photovoltaics. in Sixteenth European Photovoltaic Solar Energy Conference. Routledge.
[31] Häusler, T. and H. Rogaß. (1998) Photovoltaic module with latent heat-storage-collector. in 2nd World Conference on Photovoltaic Solar Energy Conversion, proceedings of the international conference held at Vienna, Austria, 6-10 July, vol. 1. 1998. Office for Official Publications of the European Communities.
[32] Ma, T., et al., (2015) Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews. 43: p. 1273-1284.
[33] Radziemska, E., (2003) The effect of temperature on the power drop in crystalline silicon solar cells. Renewable energy. 28(1): p. 1-12.
[34] Krauter, S. and R. Hanitsch. (1994) Actual optical and thermal performance of photovoltaic modules. in IEEE 24 th Photovoltaic Specialist Conference..
[35] Weakliem, H. and D. Redfield, (1979)Temperature dependence of the optical properties of silicon. Journal of Applied Physics. 50(3): p. 1491-1493.
[36] EIA, U., (2017) US electric generating capacity increase in 2016 was largest net change since 2011. Today in Energy. 27.
[37] Shamsundar, N. and E. Sparrow, (1975) Analysis of multidimensional conduction phase change via the enthalpy model. 1975.
 
[38] Farooq, U., et al., (2018) Transpiration and viscous dissipation effects on entropy generation in hybrid nanofluid flow over a nonlinear radially stretching disk. Entropy. 20(9): p. 668.
[39] Jalili, P., et al., (2022) Heat transfer analysis in cylindrical polar system with magnetic field: a novel hybrid analytical and numerical technique. Case Studies in Thermal Engineering. 40: p. 102524.
[40] Jalili, B., et al., (2023) Analytical approach for micropolar fluid flow in a channel with porous walls. Alexandria Engineering Journal. 79: p. 196-226.
[41] Jalili, P., et al., (2023) A novel technique for solving unsteady three-dimensional brownian motion of a thin film nanofluid flow over a rotating surface. Scientific Reports, 2023. 13(1): p. 13241.
[42] Azar, E.A., et al., (2023) An exact analytical solution of the Emden–Chandrasekhar equation for self-gravitating isothermal gas spheres in the theory of stellar structures. Physics of the Dark Universe. 42: p. 101309.
[43] Jalili, B., et al., (2023) impact of variable viscosity on asymmetric fluid flow through the expanding/contracting porous channel: A thermal analysis. Case Studies in Thermal Engineering. 52: p. 103672.
[44] Jalili, B., et al., (2024) A novel approach to micropolar fluid flow between a non-porous disk and a porous disk with slip. Chinese Journal of Physics. 87: p. 118-137.
[45] Jalili, P., et al., (2023) A Novel analytical investigation of a swirling fluid flow and a rotating disk in the presence of uniform suction. Arabian Journal for Science and Engineering: p. 1-17.
[46] Ahmadi Azar, A., et al., (2023) Investigating the effect of structural changes of two stretching disks on the dynamics of the MHD model. Scientific Reports. 13(1): p. 21833.
[47] Jalili, P., et al., (2023) The HAN method for a thermal analysis of forced non-Newtonian MHD Reiner-Rivlin viscoelastic fluid motion between two disks. Heliyon, 2023.
[48] Karimi, M., et al., (2017) A Spatial and Mathematical Based Model for Solar Energy Potential Assessment and Optimal Lands for Solar Power Plant Construction in Iran.