محاسبه نرخ واکنش پودر سولفید مولیبدن و بررسی اثر دما بر زمان واکنش

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مکانیک، دانشگاه یزد، ایران

2 دانشیار، دانشکده مکانیک، دانشگاه یزد، ایران

10.22044/jsfm.2025.14657.3869

چکیده

در این تحقیق، به محاسبه‌ی نرخ واکنش پودر سولفید مولیبدن در یک کوره‌ی بستر سیالی، پرداخته شده و اثر دما بر نرخ واکنش، ترم تولید حرارت و زمان واکنش به‌دست‌آمده است. سپس معادله انتقال حرارت با در نظرگرفتن انتقال حرارت جابجایی، هدایت، و تابشی حل شده و دمای ذره در طول کوره به‌دست آمده است. مشخصات پودر سولفید مولیبدن با قطر ذرات 100 میکرون و ضریب تخلخل بستر، 50 درصد مورد استفاده قرار گرفته است که مشاهده شد زمان واکنش نزدیک5000 ثانیه و زمان رسیدن دمای ذرات به دمای سیال بستر حدود ۳۶۵ ثانیه است. همچنین مشخص شد در شرایط مورداستفاده، در فاصله زمانی 500 تا 1800 ثانیه دمای ذرات به بالاتر از 600 درجه سانتی‌گراد می‌رسد که باعث چسبندگی ذرات می‌شود و باید با کاهش دمای سیال بستر و افزایش سرعت سیال، مانع افزایش دما به بالاتر از محدوده مجاز شد. به‌منظور صحت‌سنجی نتایج، زمان واکنش محاسبه شده با نتایج آزمایشگاهی مقایسه شد که تطابق خوبی دارند. این مقاله قسمتی از یک تحقیق گسترده‌تر، به‌منظور ساخت کوره‌ی بستر سیالی برای اکسیداسیون سولفید مولیبدن در مجتمع مس شهربابک است و با استفاده از نتایج آن، برای اولین بار در کشور یک کوره‌ی بستر سیالی مخصوص تشویه‌ی مولیبدنیت در ابعاد پایلوت ساخته شده است.

کلیدواژه‌ها

موضوعات


[1] V. Eremin, E. Blynskaya, K. Alekseev, S. Tishkov, S. Minaev, (2025) Comparative Analysis of Innovative Wet Granulation Technologies for Pharmaceutical Production (A Review), Pharmaceutical Chemistry J., 1-10.
[2] O.P. Ranjan, A.P. Kumbhar, (2025) Dry and wet granulation, in:  Polymers for Oral Drug Delivery Technologies, Elsevier, pp. 463-494.
[3] P. Singh, V.K. Pandey, R. Singh, A.H. Dar, (2024) Spray-freeze-drying as emerging and substantial quality enhancement technique in food industry, Food Science and Biotechnology, 33(2), 231-243.
[4] J. Bag, N. Singh, (2024) Traditional and Contemporary Drying Methods an Overview, J. Ayurveda and Integrated Medical Sciences, 9(6), 111-121.
[5] S.M. El-Sayed, H.S. El-Sayed, A.M. Youssef, (2024) Recent developments in encapsulation techniques for innovative and high-quality dairy products: Demands and challenges, Bioactive Carbohydrates and Dietary Fibre, 100406.
[6] C. Jakkamsetty, P. Subramanian, A. Rashidinejad, (2024) Spray drying of milk and milk products, Spray Drying for the Food Industry, 87-123.
[7] H.I.C. Peláez, M. Cortés-Rodríguez, R. Ortega-Toro, (2023) Storage stability of a fluidized-bed agglomerated spray-dried strawberry powder mixture, F1000Research, 12, 1174.
[8] J. Jang, H. Arastoopour, (2013) CFD simulation of different-scaled bubbling fluidized beds.
[9] F. Taghipour, N. Ellis, C. Wong, (2005) Experimental and computational study of gas–solid fluidized bed hydrodynamics, Chemical Engineering Science, 60(24), 6857-6867.
[10] L. Armstrong, S. Gu, K. Luo, (2010), Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow, Int. J heat mass transfer, 53(21-22) 4949-4959.
[11] V. Bigot, Guyot I. Bataille D., Roustan M.,- (1990) Possibilities of use of two sensors depression metrological techniques and fiber optics, to characterize the hydrodynamics of a fluidized bed triphasic, Recent Advances in Process Engineering, 4 ,143-156.
[12] F. Merchant, A. Margaritis, J. Wallace, A. Vardanis, (1987) A novel technique for measuring solute diffusivities in entrapment matrices used in immobilization, Biotechnology and bioengineering, 30(8), 936-945.
[13] L.A. Briens, N. Ellis, (2005) Hydrodynamics of three-phase fluidized bed systems examined by statistical, fractal, chaos and wavelet analysis methods, Chemical engineering science, 60(22) 6094-6106.
[14] X. Luo, P. Jiang, L.S. Fan, (1997) High‐pressure three‐phase fluidization: Hydrodynamics and heat transfer, AIChE J., 43(10)2432-2445.
[15] V. Bhatia, N. Epstein, (1974) Three phase fluidization: a generalized wake model, Fluidization and its Applications, 380-392.
[16] H. Jena, G. Roy, K. Biswal, (2008) Studies on pressure drop and minimum fluidization velocity of gas–solid fluidization of homogeneous well-mixed ternary mixtures in un-promoted and promoted square bed, Chemical Engineering J., 145(1) 16-24.
[17] J. Liu, L. Wang, G. Wu, (2024) Sintering Behavior of Molybdenite Concentrate During Oxidation Roasting Process in Air Atmosphere: Influences of Roasting Temperature and K Content, Molecules, 29(21) 5183.
[18] J. Heo, S. Baek, K. Kurniawan, S. Han, Y. Kim, H. Park, J. Seo, (2024) Optimizing rotary kiln operations for molybdenite concentrate oxidation roasting to produce molybdic trioxide, Chemical Engineering J. Advances, 20 100642.
[19] A.A. Shaikh, J. Bhattacharjee, P. Datta, S. Roy, (2024) A comprehensive review of the oxidation states of molybdenum oxides and their diverse applications, Sustainable Chemistry for the Environment, 100125.
[20] W. Zhang, K. Wang, Y. Tian, L. Liao, H. Liu, (2025) High hydrogen evolution reaction performance of MoS2 nanosheets with sulfur vacancies synthesized from natural molybdenite, J. Materials Science, 1-12.
[21] X.-b. Li, W. Tao, Q.-s. Zhou, T.-g. Qi, Z.-h. Peng, G.-h. Liu, (2021)Kinetics of oxidation roasting of molybdenite with different particle sizes, Transactions of Nonferrous Metals Society of China, 31(3) 842-852.
[22]I. Wilkomirsky, A. Otero, E. Balladares, (2010) Kinetics and reaction mechanisms of high-temperature flash oxidation of molybdenite, Metallurgical and Materials Transactions B, 41(1) 63-73.
[23] A. Abdel-Rehim, (1999) Thermal analysis and X-ray diffraction of roasting of Egyptian molybdenite, J. Thermal Analysis and Calorimetry, 57 415-431.
[24] M. Bidabadi, N. Moallemi, A. Shabani, M. Abdous, (2010) Analysis of size distribution and ignition temperature effects on flame speeds in aluminium dust clouds, Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Engineering, 224(1) 113-119.
[25] M. Bidabadi, A. Shabani, (2008)An analytic model for flame quenching distance in aluminum dust suspensions, Australian J. Basis and Applied Sciences, 2(4)1058-1067.
[26] M. Bidabadi, A. Shabani Shahrbabaki, M. Jadidi, S. Montazerinejad, (2010) An analytical study of radiation effects on the premixed laminar flames of aluminium dust clouds, Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(8) 1679-1695.
[27] A.S. Shahrbabaki, R. Abazari, (2009) Perturbation method for heat exchange between a gas and solid particles, J. appl. mech. tech. phys., 50(6) 959-964.
[28] A.S. Shahrbabaki, V. Kalantar, S.H. Mansouri, (2022)Analytical and numerical considerations of the minimum fluidization velocity of the molybdenite particles, Computational Particle Mechanics.
[29] A. Shahrbabaki, M. Dodangeh, (2010) Particle temperature distribution in a dust flame, Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(2) 363-367.
[30] M.A. Izquierdo Barrientos, (2014)Heat transfer and thermal storage in fixed and fluidized beds of phase change materials.
[31] R. Krupiczka, (1967) Analysis of thermal conductivity in granular materials, International Chemical Engineering, 7(1) 122.
[32] W.-c. Yang, (2003)Handbook of fluidization and fluid-particle systems, CRC press.
[33] D. Kunii, O. Levenspiel, (2013)Fluidization engineering, Elsevier.
 
[34] D. Gunn, (1978)Transfer of heat or mass to particles in fixed and fluidised beds, Int. J.of Heat and Mass Transfer, 21(4) 467-476.
[35] A.K. Kothari, (1967)Analysis of fluid-solid heat transfer coefficients in fluidized beds.
[36] J.H. Espenson, (1995)Chemical kinetics and reaction mechanisms, Citeseer.
[37] G. Mirson, A. Zelikman, (1965) Metallurgy of rare metals, Metallurgia Publ., Moscow.
[38] W. Lu, G.-h. Zhang, D. Jie, K.-c. Chou, (2015) Oxidation roasting of molybdenite concentrate, Transactions of Nonferrous Metals Society of China, 25(12) 4167-4174.
[39] S. Kan, K. Benzeşik, M.Ş. Sönmez, O. Yücel, Roasting of Molybdenite Concentrates in Pilot Scale Rotary Furnace.
[40] T. Marin, T. Utigard, C. Hernandez, (2009) Roasting kinetics of molybdenite concentrates, Canadian Metallurgical Quarterly, 48(1) 73-80.