[1] Brøndsted P, Nijssen R, Goutianos S (2023) Advances in Wind Turbine Blade Design and Materials. Woodhead Publishing.
[2] Hau E, von Renouard H (2006) Wind Turbines. Springer Berlin Heidelberg.
[3] Ghorani MM, Karimi B, Mirghavami SM, Saboohi Z (2023) A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT). Energy 268: 126643.
[4] Mohamed RR (2017) A Review on Vertical and Horizontal Axis Wind Turbine. Int. Res. J. Eng. Technol. Sept: 247–250.
[5] Castellani F, Astolfi D, Peppoloni M, Natili F, Buttà D, Hirschl A (2019) Experimental Vibration Analysis of a Small Scale Vertical Wind Energy System for Residential Use. Machines 7: 35.
[6] Marsh P, Ranmuthugala D, Penesis I, Thomas G (2015) Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 81: 926–935.
[7] Sun M, et al. (2024) A novel small-scale H-type Darrieus vertical axis wind turbine manufactured of carbon fiber reinforced composites. Renew. Energy 238: 121923.
[8] Xue P, Wan Y, Takahashi J, Akimoto H (2024) Structural optimization using a genetic algorithm aiming for the minimum mass of vertical axis wind turbines using composite materials. Heliyon 10(12): e33185.
[9] Wang L, Kolios A, Nishino T, Delafin PL, Bird T (2016) Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos. Struct. 153: 123–138.
[10] Castro D, Pertuz A, León-Becerra J (2022) Mechanical behavior analysis of a vertical axis wind turbine blade made with fique-epoxy composite using FEM. Procedia Comput. Sci. 203: 310–317.
[11] Rezaeiha A, Montazeri H, Blocken B (2018) Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. Energy 165: 1129–1148.
[12] Hand BP, Kelly G, Cashman A (2021) Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renew. Sustain. Energy Rev. 139: 110699.
[13] Hand BP, Cashman A (2017) Conceptual design of a large-scale floating offshore vertical axis wind turbine. Energy Procedia 142: 150–157.
[14] Rezaeiha A, Kalkman I, Blocken B (2017) Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197: 132–150.
[15] Battisti L, et al. (2018) Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renew. Energy 125: 98–110.
[16] Lee S-L (2021) Active vibration suppression of wind turbine blades integrated with piezoelectric sensors. Sci. Eng. Compos. Mater. 28: 402–414.
[17] Fraile CW (2020) Accelerating Wind Turbine Blade Circularity. Themat. reports May: 11–13.
[18] Bir G, Lawson M, Li Ye (2011) Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade. J. Sol. Energy Eng. 133: 1–5.
[19] Leong M, Overgaard LCT, Thomsen O, Lund E, Daniel I (2012) Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Compos. Struct. 94: 1501–1513.
[20] Miao W, et al. (2023) Recommendation for strut designs of vertical axis wind turbines: Effects of strut profiles and connecting configurations on the aerodynamic performance. Energy Convers. Manag. 276: 116436.
[21] IEC (2005) IEC 61400-1: Wind Turbines – Part 1: Design Requirements. Int. Electrotech. Comm.
[22] Germanischer L (2010) DNV Standard GL. IV - Rules and Guideline Industrial Services. Guidel. Certif. offshore Wind turbines. Hamburg: DNV. Available: www.gl-group.com/GLRenewables.
[23] Bir G (2001) Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades. J. Sol. Energy Eng. 123: 345–358.
[24] Bir G (2005) User’s Guide to PreComp (Pre-Processor for Computing Composite Blade Properties). National Renewable Energy Lab.
[25] NREL (2024) PreComp. Available: https://www.nrel.gov/wind/nwtc/precomp.html.
[26] Dassault Systèmes (2016) Abaqus Analysis User’s Guide Volume II.