بررسی عددی زمان‏بندی احتراق و سوپاپ ورودی روی عملکرد موتور اشتعال جرقه‌ای TU5

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده فنی و مهندسی، موسسه آموزش عالی اقبال لاهوری مشهد، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه ملی مهارت، تهران، ایران

3 دکتری تخصصی، مدرس مدعو، گروه مهندسی مکانیک، دانشگاه ملی مهارت، تهران، ایران

4 فارغ التحصیل مهندسی مکانیک خودرو، گروه مهندسی مکانیک، دانشگاه ملی مهارت، تهران، ایران

10.22044/jsfm.2025.15181.3901

چکیده

زمان‏بندی‏های جرقه و سوپاپ ورودی از پارامترهای عملیاتی کلیدی موتورهای اشتعال جرقه‏ای هستند که فرآیند اولیه احتراق و مقدار هوای ورودی در طی کارکرد موتور تعیین می‏کنند. بنابراین، تعیین زمان مناسب برای شروع جرقه و تنفس عوامل مهمی برای بهبود عملکرد موتور و احتراق کامل هستند. هدف از کار حاضر ارزیابی تاثیرات زمان جرقه زنی و سوپاپ ورودی و انتخاب مناسب نسبت تراکم در دورهای مختلف بر عملکرد موتور TU5 به روش عددی است. برای دستیابی به این هدف، ابتدا نتایج شبیه‏سازی عددی با نتایج تجربی مقایسه و اعتبارسنجی می‏شود، سپس تاثیر پارامترهای فنی موتور از جمله نسبت تراکم، زمان‏بندی‏های احتراق و سوپاپ ورودی در دورهای مختلف روی مشخصه‏های قدرت، گشتاور، فشار متوسط احتراق، راندمان حجمی، بازده حرارتی و مصرف سوخت ویژه بررسی می‏گردد. نتایج نشان داد که مشخصه‏های خروجی موتور در دور 4000 دور بر دقیقه بهترین عملکرد را دارد. همچنین آوانس بهینه برای ماکزیمم شدن توان و گشتاور و پایین‏ترین مقدار مصرف سوخت ویژه در دورهای 2000 و 4000 دور بر دقیقه به ترتیب 5 و 10 درجه قبل از نقطه مرگ بالا است. بعلاوه، با انتخاب زاویه آوانس سوپاپ ورودی در حدود 30 درجه قبل از فرایند مکش، راندمان حجمی تا حدود 97 درصد خواهد رسید.

کلیدواژه‌ها

موضوعات


[1] Kakee A-H, Sharifipour S, Mashadi B, Keshavarz M, Paykani A. (2015) Optimization of spark timing and air-fuel ratio of an SI engine with variable valve timing using genetic algorithm and steepest descend method. UPB Sci Bull Ser D Mech Eng. 77: 61–76.
[2] Talati H, Ebrahimi-Moghadam A, Aliakbari K. (2024) Design and evaluation of an innovative variable-length manifold with variable runner connection on a 4-cylinder spark ignition engine. Appl Therm Eng. 123796.
[3] Mehregan M, Sheykhi M, Alizadeh Kharkeshi B, Emamian A, Aliakbari K, Rafiee N. (2023) Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine. Energy Convers Manag. 283: 116874.
[4] Rahman MM, Noor MM, Kadirgama K, Rejab MRM. (2009) Study of air fuel ratio on engine performance of direct injection hydrogen fueled engine. Eur J Sci Res. 34: 506–13.
[5] Leroy T, Chauvin J, Petit N. (2009) Motion planning for experimental air path control of a variable-valve-timing spark ignition engine. Control Eng Pract. 17: p. 1432–9.
[6] Talati H, Aliakbari K, Ebrahimi-Moghadam A, Farokhad HK, Nasrabad AE. (2022) Optimal design and analysis of a novel variable-length intake manifold on a four-cylinder gasoline engine. Appl Therm Eng. 200: 117631.
[7] Safar M, OMMI F, Saboohi Z. (2021) Experimental study of the effects of multi-electrode spark plugs to improve engine performance and reduce pollutants of the XU7JP/L3 engine.
[8] Doustdar MM, Hamidi H. (2018) Numerical Investigation of a SI-Engine Performance Equipped with a Variable Valve Timing System.
[9] Mohammadi A. (2021) Effect of Gas injector direction on mixture formation in a spark ignition engine. J Solid Fluid Mech. 11: 233–46.
[10] Li J, Gong C-M, Su Y, Dou H-L, Liu X-J. (2010) Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol. Fuel. 89: 3919–25.
[11] Khoa NX, Lim O. (2019) The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine. Appl Energy. 248: 54–63.
[12] Chan SH, Zhu J. (2001) Modelling of engine in-cylinder thermodynamics under high values of ignition retard. Int J Therm Sci. 40: 94–103.
[13] Chen Z, Wang L, Zhang Q, Zhang X, Yang B, Zeng K. (2019) Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Convers Manag. 181: 519–27.
[14] Urroz JC, Diéguez PM, Arzamendi G, Arana M, Gandía LM. (2023) Gaseous fueling of an adapted commercial automotive spark-ignition engine: Simplified thermodynamic modeling and experimental study running on hydrogen, methane, carbon monoxide and their mixtures. Fuel. 337: 127178.
[15] Qian L, Wan J, Qian Y, Sun Y, Zhuang Y. (2022) Experimental investigation of water injection and spark timing effects on combustion and emissions of a hybrid hydrogen-gasoline engine. Fuel. 322: 124051.
[16] Yun KT, Cho H, Luck R, Mago PJ. (2013) Modeling of reciprocating internal combustion engines for power generation and heat recovery. Appl Energy. 102: 327–35.
[17] Chen L, Zhao W, Zhang R, Pan J. (2024) Numerical study of HTJI on combustion characteristics of neat ammonia engine under atmospheric intake conditions. Int J Hydrogen Energy. 68: 453–62.
[18] Ji C, Qiang Y, Wang S, Xin G, Wang Z, Hong C, et al. (2024) Numerical investigation on the combustion performance of ammonia-hydrogen spark-ignition engine under various high compression ratios and different spark-ignition timings. Int J Hydrogen Energy. 56: 817–27.
[19] Hu D, Wang H, Yang C, Wang B, Yang Q, Wang Y. (2024) Construction and verification of dual-fuel engine combustion model. J Energy Inst. 112: 101486.
[20] Salvi BL, Subramanian KA. (2022) A novel approach for experimental study and numerical modeling of combustion characteristics of a hydrogen fuelled spark ignition engine. Sustain Energy Technol Assessments. 51: 101972.
[21] Hedfi H, Jbara A, Jedli H, Slimi K, Stoppato A. (2016) Performance enhancement of a spark ignition engine fed by different fuel types. Energy Convers Manag. 112: 166–75.
[22] Yuan H, Giles K, Zhu S, Howson S, Lewis A, Akehurst S, et al. (2021) Kinetic modelling of combustion in a spark ignition engine with water injection. Fuel. 283: 118814.
[23] Gong C, Li D, Liu J, Liu F. (2024) Numerical evaluation of ignition timing influences on performance of a stratified-charge H2/methanol dual-injection automobile engine under lean-burn condition. Energy. 290: 130209.
[24] Bianco A, Millo F, Piano A. (2020) Modelling of combustion and knock onset risk in a high-performance turbulent jet ignition engine. Transp Eng. 2: 100037.
[25] Huang H, Xing K, Ning D, Guo X, Wang Y. (2024) Quantitative analysis of the relationship between charge motion and knocking combustion in spark-ignition natural-gas engines under critical knocking conditions. Fuel. 371: 132060.
[26] Karagöz Y, Balcı Ö, Gezer O, Köten H, Işın Ö. (2021) Performance and emissions of spark-ignition engines fuelled with petrol and methane. Proc Inst Civ Eng – Energy. 174: 156–69.
[27] Sheykhi M, Mehregan M, Aliakbari K. (2023) A novel differential thermodynamic model for simulating spark ignition engine performance. Energy Convers Manag. 298: 117794.
[28] Iliev S. (2015) A comparison of ethanol and methanol blending with gasoline using a 1-D engine model. Procedia Eng. 100: 1013–22.
[29] Ma F, Wang Y, Wang J, Ding S, Wang Y, Zhao S. (2008) Effects of combustion phasing, combustion duration, and their cyclic variations on spark-ignition (SI) engine efficiency. Energy & Fuels. 22: 3022–8.
[30] Iodice P, Senatore A, Langella G, Amoresano A. (2016) Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation. Appl Energy. 179: 182–90.
[31] AVL List Gmbh, (2013) AVL Boost – Theory.
[32] Iliev SP. (2015) Developing of a 1-D Combustion model and study of engine performance and exhaust emission using ethanol-gasoline blends. Trans. Eng. Technol. World Congr. Eng. Springer. p. 85–98.
[33] Salek F, Babaie M, Hosseini SV, Bég OA. (2021) Multi-objective optimization of the engine performance and emissions for a hydrogen/gasoline dual-fuel engine equipped with the port water injection system. Int J Hydrogen Energy. 46: 10535–47.
[34] Silva EAA, Ochoa AA V, Henríquez JR. (2019) Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Convers Manag. 188: 310–20.
[35] Ceviz MA, Akın M. (2010) Design of a new SI engine intake manifold with variable length plenum. Energy Convers Manag. 51: 2239–44.
[36] Kashi SS, Qasemian A. (2022) Utilization of Stirling engine to improve the performance and fuel consumption of an internal combustion engine by exhaust gas heat recovery. J Engine Res. 66: 68–84.
[37] Durão L, Costa J, Arantes T, Brito FP, Martins J, Gonçalves M. (2020) Performance and emissions of a spark ignition engine operated with gasoline supplemented with pyrogasoline and ethanol. Energies. 13: 4671.