بررسی اثر هم‌زمان عملیات کوبش شوک لیزری و پوشش‌دهی اکسیدگرافن بر تنش پسماند و خواص خوردگی خستگی آلیاژ IN792

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجو دکتری، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

3 دانشیار، دانشکده مهندسی مکانیک و مواد، دانشگاه صنعتی بیرجند، بیرجند، ایران

4 استادیار، دانشکده فیزیک، دانشگاه ولیعصر رفسجان، رفسنجان، ایران

10.22044/jsfm.2024.14595.3871

چکیده

سوپرآلیاژهای مورداستفاده در ساخت پره‌های توربین تحت شرایط محیط خورنده توام با تنش و دمای بالا، مورد تخریب قرار می‌گیرند. اصلاح سطح به روش مکانیکی مانند کوبش شوک لیزری با تابش پرتوی لیزر بر سطح فلز و ایجاد تغییر شکل پلاستیک و تنش‌ پسماند فشاری در سطح موجب بهبود مقاومت ماده در برابر تخریب می‌شود. به‌علاوه اعمال پوشش‌های نانوساختار یکی از روش‌های نوین جهت افزایش مقاومت اجزاء تحت محیط خورنده و دما بالا محسوب می‌شود. هدف از این مقاله بررسی کوبش شوک لیزری بر تنش پسماند و خوردگی خستگی اینکونل 792 در محیط خورنده حاوی 75% Na_2 SO_4+15% NaCl+10% V_2 O_5 می‌باشد. بدین منظور تعدادی از نمونه‌های خام با اکسید گرافن پوشش‌دهی شدند؛ در نهایت تمامی نمونه‌ها در معرض کوبش شوک لیزری قرار گرفتند. پس از این عملیات نمونه‌ها تحت محیط خورنده در دمای بالا در معرض خوردگی قرار گرفتند، سپس آزمایش خستگی در دمای محیط انجام شد. نتیجه این پژوهش نشان داد که هر دو عملیات پوشش‌دهی و کوبش لیزری موجب بهبود عمر خستگی می‌شود. کوبش لیزری به تنهایی 2.4 برابر عمر خستگی این آلیاژ را افزایش داده است.

کلیدواژه‌ها

موضوعات


[1] Brooks, C. R. (1982). Heat treatment, structure and properties of nonferrous alloys. (No Title).
[2] Sims, C. T., Stoloff, N. S., & Hagel, W. C. (Eds.). (1987). superalloys II (Vol. 8). New York: Wiley.
[3] Neidel, A., & Riesenbeck, S. (2012). Pitting Corrosion Induced Fatigue Fracture on a Gas Turbine Compressor Blade. Prakt. Metallogr., 49(1), 35-48.
[4] Schönbauer, B. M., Stanzl-Tschegg, S. E., Perlega, A., Salzman, R. N., Rieger, N. F., Zhou, S. & Gandy, D. (2014). Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. Int. J. Fatigue, 65, 33-43.
[5] Larrosa, N. O., Akid, R., & Ainsworth, R. A. (2018). Corrosion-fatigue: a review of damage tolerance models. Int. Mater. Rev., 63(5), 283-308.
[6] Lu, J. Z., Luo, K. Y., Yang, D. K., Cheng, X. N., Hu, J. L., Dai, F. Z., & Zhang, Y. K. (2012). Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros. Sci., 60, 145-152.
[7] Rozmus-Górnikowska, M., Kusiński, J., & Cieniek, Ł. (2020). Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer.             J. Mater. Eng. Perform. 29, 1544-1549.
[8] Ding, K., & Ye, L. (2006). Laser shock peening: performance and process simulation. Woodhead Publishing.
[9] Zhang, C., Dong, Y., & Ye, C. (2021). Recent developments and novel applications of laser shock peening: a review. Adv. Eng. Mater., 23(7), 2001216.
[10] Maleki, E., Unal, O., Guagliano, M., & Bagherifard, S. (2021). The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Mater. Sci. Eng.: A, 810, 141029.
[11] Bai, Y. C., Hua, Y. Q., Rong, Z., Xue, Q., & Chen, R. F. (2014). On laser shock processing to improve hot corrosion resistance of In718 superalloy.        Adv. Mater. Res, 989, 27-30.
[12] Prabhakaran, S., Kumar, H. P., Kalainathan, S., Vasudevan, V. K., Shukla, P., & Lin, D. (2019). Laser shock peening modified surface texturing, microstructure and mechanical properties of graphene dispersion strengthened aluminium nanocomposites. Surf. Interfaces, 14, 127-137.
[13] Karthik, D., & Swaroop, S. (2017). Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy. Journal of Alloys and Compounds, 694, 1309-1319.
[14] Wang, C., Shen, X. J., An, Z. B., Zhou, L. C., & Chai, Y. (2016). Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy. Mater. Des. 89, 582-588.
[15] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics.               Opt. Laser Technol., 171, 110290.
[16] Cockings, H. L., Cockings, B. J., Harrison, W., Dowd, M., Perkins, K. M., Whittaker, M. T. & Gibson, G. J. (2020). The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy. J. Alloys Compd. 832, 154889.
[17] Sun, Y., Wu, H., Du, H., & Yao, Z. (2022). Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Materials. 15(20), 7269.
[18] Morar, N. I., Holtham, N., Hackel, L., Davami, K., Sharma, M., DeWald, A., & Roy, R. (2023). Effects of high-energy laser peening followed by pre-hot corrosion on stress relaxation, microhardness, and fatigue life and strength of single-crystal nickel CMSX-4® superalloy. Int. J. Adv. Des. Manuf. Technol. 126(11), 4893-4912.
[19] Ding, R., Li, W., Wang, X., Gui, T., Li, B., Han, P., & Song, L. (2018). A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys and Compounds, 764, 1039-1055.
[20] Yi, Z., Kangning, C., Wei, W., Wang, J., & Lee, S. (2007). Effect of IrO2 loading on RuO2–IrO2–TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction.             Ceram.Int. 33(6), 1087-1091.
[21] Yadav, V. S., Sankar, M. R., & Pandey, L. M. (2020). Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. J. Magnesium Alloys, 8(4), 999-1015.
[22] Telang, A., Gill, A. S., Teysseyre, S., Mannava, S. R., Qian, D., & Vasudevan, V. K. (2015). Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution. Corros. Sci. 90, 434-444.
[23] TELANG, A., GILL, A. S., RAMAKRISHNAN, G., & VASUDEVAN, V. K. (2018). Effect of Different Ablative Overlays on Residual Stresses Introduced in IN718 SPF by Laser Shock Peening. Int. J. Peening Sci. Tech. (IJPST).
[24] Pradhan, D., Mahobia, G. S., Chattopadhyay, K., & Singh, V. (2018). Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600 C. Int. J. Fatigue. 114, 120-129.
[25] Rozmus-Górnikowska, M., Kusiński, J., & Cieniek, Ł. (2020). Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer.             J. Mater. Eng. Perform. 29, 1544-1549.
[26] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics.               Opt. Laser Technol. 171, 110290.
[27] Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V., & Vignal, V. (2015). Finite element analysis of laser shock peening of 2050-T8 aluminum alloy. Int. J. Fatigue 70, 480-489.
[28] Finegan, D. P., Vamvakeros, A., Cao, L., Tan, C., Heenan, T. M., Daemi, S. R., & Ban, C. (2019). Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy x-ray diffraction computed tomography.   Nano Lett. 19(6), 3811-3820.
[29] Nath, S., Shukla, P., Shen, X., & Lawrence, J. (2018). Effect of laser shock peening (LSP) on the phase evolution, residual stress and hardness of Hastelloy-X superalloys.              Lasers Eng. 39(1-2), 97-112.
[30] Huang, S., Liu, J., Sheng, J., Meng, X., Hu, X., Zhu, M., Zhou, J. (2022). High-temperature fatigue crack growth characteristics of IN718 Ni-based alloy treated by laser peening. Eng. Fract. Mech. 276, 108922.
[31] Kaufman, J., Špirit, Z., Vasudevan, V. K., Steiner, M. A., Mannava, S. R., Brajer, J., & Mocek, T. (2021). Effect of laser shock peening parameters on residual stresses and corrosion fatigue of AA5083. Metals, 11(10), 1635.
[32] Hilly, M. E. (1971). Residual stress measurement by X-ray diffraction. SAE Information Report, 784.
 [33] Ross, J. R. (2018). Contemporary Catalysis: Fundamentals and Current Applications. Elsevier.
[34] Wang, L., Yu, K., Cheng, X., Cao, T., & Zhou, L. (2023). Effect of laser shock peening on microstructure and mechanical properties of laser cladding 30CrMnSiNi2A high-strength steel. Scientific Reports, 13(1), 9971.
[35] Samuel, C., Moganraj, A., Swaroop, S., Praveenkumar, K., Natarajan, A., Nageshwara Rao, M., & Bhattacharya, B. (2023). Effect of laser shock peening without coating on grain size and residual stress distribution in a microalloyed steel grade. Crystals, 13(2), 212.
[36] Mahobia, G. S., Paulose, N., Mannan, S. L., Sudhakar, R. G., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2014). Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int. J. Fatigue. 59, 272-281.
[37] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics.               Opt. Laser Technol. 171, 110290.
[38] Mahobia, G. S., Paulose, N., Mannan, S. L., Sudhakar, R. G., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2014). Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int. J. Fatigue. 59, 272-281.
[39] Huang, S., Liu, J., Sheng, J., Meng, X., Hu, X., Zhu, M & Zhou, J. (2022). High-temperature fatigue crack growth characteristics of IN718 Ni-based alloy treated by laser peening. Eng. Fract. Mech. 276, 108922.
[40] Mączka, M., Collings, I. E., Leite, F. F., & Paraguassu, W. (2019). Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C 3 H 7) 4 N][Mn (N (CN) 2) 3]. Dalton Transactions, 48(25), 9072-9078.
[41] Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B., & Fomin, F. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam‐welded AA6056. Fatigue Fract. Eng. Mater. Struct. 43(7), 1500-1513.
 
[42] Geethapriyan, T., Palani, I. A., Singh, M. K., Rai, D. K., Shanmuga Priyan, V. G., & Subbu, S. K. (2023). Post-processing of wire arc additive manufactured stainless steel 308L to enhance compression and corrosion behavior using laser shock peening process. J. Mater. Eng. Perform. 1-15.
[43] Yoo, Y. R., Choi, S. H., & Kim, Y. S. (2023). Effect of laser peening on the corrosion properties of 304L stainless steel. Materials, 16(2), 804.