[1] Brooks, C. R. (1982). Heat treatment, structure and properties of nonferrous alloys. (No Title).
[2] Sims, C. T., Stoloff, N. S., & Hagel, W. C. (Eds.). (1987). superalloys II (Vol. 8). New York: Wiley.
[3] Neidel, A., & Riesenbeck, S. (2012). Pitting Corrosion Induced Fatigue Fracture on a Gas Turbine Compressor Blade. Prakt. Metallogr., 49(1), 35-48.
[4] Schönbauer, B. M., Stanzl-Tschegg, S. E., Perlega, A., Salzman, R. N., Rieger, N. F., Zhou, S. & Gandy, D. (2014). Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. Int. J. Fatigue, 65, 33-43.
[5] Larrosa, N. O., Akid, R., & Ainsworth, R. A. (2018). Corrosion-fatigue: a review of damage tolerance models. Int. Mater. Rev., 63(5), 283-308.
[6] Lu, J. Z., Luo, K. Y., Yang, D. K., Cheng, X. N., Hu, J. L., Dai, F. Z., & Zhang, Y. K. (2012). Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros. Sci., 60, 145-152.
[7] Rozmus-Górnikowska, M., Kusiński, J., & Cieniek, Ł. (2020). Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer. J. Mater. Eng. Perform. 29, 1544-1549.
[8] Ding, K., & Ye, L. (2006). Laser shock peening: performance and process simulation. Woodhead Publishing.
[9] Zhang, C., Dong, Y., & Ye, C. (2021). Recent developments and novel applications of laser shock peening: a review. Adv. Eng. Mater., 23(7), 2001216.
[10] Maleki, E., Unal, O., Guagliano, M., & Bagherifard, S. (2021). The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Mater. Sci. Eng.: A, 810, 141029.
[11] Bai, Y. C., Hua, Y. Q., Rong, Z., Xue, Q., & Chen, R. F. (2014). On laser shock processing to improve hot corrosion resistance of In718 superalloy. Adv. Mater. Res, 989, 27-30.
[12] Prabhakaran, S., Kumar, H. P., Kalainathan, S., Vasudevan, V. K., Shukla, P., & Lin, D. (2019). Laser shock peening modified surface texturing, microstructure and mechanical properties of graphene dispersion strengthened aluminium nanocomposites. Surf. Interfaces, 14, 127-137.
[13] Karthik, D., & Swaroop, S. (2017). Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy. Journal of Alloys and Compounds, 694, 1309-1319.
[14] Wang, C., Shen, X. J., An, Z. B., Zhou, L. C., & Chai, Y. (2016). Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy. Mater. Des. 89, 582-588.
[15] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics. Opt. Laser Technol., 171, 110290.
[16] Cockings, H. L., Cockings, B. J., Harrison, W., Dowd, M., Perkins, K. M., Whittaker, M. T. & Gibson, G. J. (2020). The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy. J. Alloys Compd. 832, 154889.
[17] Sun, Y., Wu, H., Du, H., & Yao, Z. (2022). Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Materials. 15(20), 7269.
[18] Morar, N. I., Holtham, N., Hackel, L., Davami, K., Sharma, M., DeWald, A., & Roy, R. (2023). Effects of high-energy laser peening followed by pre-hot corrosion on stress relaxation, microhardness, and fatigue life and strength of single-crystal nickel CMSX-4® superalloy. Int. J. Adv. Des. Manuf. Technol. 126(11), 4893-4912.
[19] Ding, R., Li, W., Wang, X., Gui, T., Li, B., Han, P., & Song, L. (2018). A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys and Compounds, 764, 1039-1055.
[20] Yi, Z., Kangning, C., Wei, W., Wang, J., & Lee, S. (2007). Effect of IrO2 loading on RuO2–IrO2–TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction. Ceram.Int. 33(6), 1087-1091.
[21] Yadav, V. S., Sankar, M. R., & Pandey, L. M. (2020). Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. J. Magnesium Alloys, 8(4), 999-1015.
[22] Telang, A., Gill, A. S., Teysseyre, S., Mannava, S. R., Qian, D., & Vasudevan, V. K. (2015). Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution. Corros. Sci. 90, 434-444.
[23] TELANG, A., GILL, A. S., RAMAKRISHNAN, G., & VASUDEVAN, V. K. (2018). Effect of Different Ablative Overlays on Residual Stresses Introduced in IN718 SPF by Laser Shock Peening. Int. J. Peening Sci. Tech. (IJPST).
[24] Pradhan, D., Mahobia, G. S., Chattopadhyay, K., & Singh, V. (2018). Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600 C. Int. J. Fatigue. 114, 120-129.
[25] Rozmus-Górnikowska, M., Kusiński, J., & Cieniek, Ł. (2020). Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer. J. Mater. Eng. Perform. 29, 1544-1549.
[26] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics. Opt. Laser Technol. 171, 110290.
[27] Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V., & Vignal, V. (2015). Finite element analysis of laser shock peening of 2050-T8 aluminum alloy. Int. J. Fatigue 70, 480-489.
[28] Finegan, D. P., Vamvakeros, A., Cao, L., Tan, C., Heenan, T. M., Daemi, S. R., & Ban, C. (2019). Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy x-ray diffraction computed tomography. Nano Lett. 19(6), 3811-3820.
[29] Nath, S., Shukla, P., Shen, X., & Lawrence, J. (2018). Effect of laser shock peening (LSP) on the phase evolution, residual stress and hardness of Hastelloy-X superalloys. Lasers Eng. 39(1-2), 97-112.
[30] Huang, S., Liu, J., Sheng, J., Meng, X., Hu, X., Zhu, M., Zhou, J. (2022). High-temperature fatigue crack growth characteristics of IN718 Ni-based alloy treated by laser peening. Eng. Fract. Mech. 276, 108922.
[31] Kaufman, J., Špirit, Z., Vasudevan, V. K., Steiner, M. A., Mannava, S. R., Brajer, J., & Mocek, T. (2021). Effect of laser shock peening parameters on residual stresses and corrosion fatigue of AA5083. Metals, 11(10), 1635.
[32] Hilly, M. E. (1971). Residual stress measurement by X-ray diffraction. SAE Information Report, 784.
[33] Ross, J. R. (2018). Contemporary Catalysis: Fundamentals and Current Applications. Elsevier.
[34] Wang, L., Yu, K., Cheng, X., Cao, T., & Zhou, L. (2023). Effect of laser shock peening on microstructure and mechanical properties of laser cladding 30CrMnSiNi2A high-strength steel. Scientific Reports, 13(1), 9971.
[35] Samuel, C., Moganraj, A., Swaroop, S., Praveenkumar, K., Natarajan, A., Nageshwara Rao, M., & Bhattacharya, B. (2023). Effect of laser shock peening without coating on grain size and residual stress distribution in a microalloyed steel grade. Crystals, 13(2), 212.
[36] Mahobia, G. S., Paulose, N., Mannan, S. L., Sudhakar, R. G., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2014). Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int. J. Fatigue. 59, 272-281.
[37] Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C. M., & Jeong, S. (2024). Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics. Opt. Laser Technol. 171, 110290.
[38] Mahobia, G. S., Paulose, N., Mannan, S. L., Sudhakar, R. G., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2014). Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int. J. Fatigue. 59, 272-281.
[39] Huang, S., Liu, J., Sheng, J., Meng, X., Hu, X., Zhu, M & Zhou, J. (2022). High-temperature fatigue crack growth characteristics of IN718 Ni-based alloy treated by laser peening. Eng. Fract. Mech. 276, 108922.
[40] Mączka, M., Collings, I. E., Leite, F. F., & Paraguassu, W. (2019). Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C 3 H 7) 4 N][Mn (N (CN) 2) 3]. Dalton Transactions, 48(25), 9072-9078.
[41] Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B., & Fomin, F. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam‐welded AA6056. Fatigue Fract. Eng. Mater. Struct. 43(7), 1500-1513.
[42] Geethapriyan, T., Palani, I. A., Singh, M. K., Rai, D. K., Shanmuga Priyan, V. G., & Subbu, S. K. (2023). Post-processing of wire arc additive manufactured stainless steel 308L to enhance compression and corrosion behavior using laser shock peening process. J. Mater. Eng. Perform. 1-15.
[43] Yoo, Y. R., Choi, S. H., & Kim, Y. S. (2023). Effect of laser peening on the corrosion properties of 304L stainless steel. Materials, 16(2), 804.