مدل‌سازی عملکرد هیدرولیکی- حرارتی یک کانال نیمه‌متخلخل سینوسی با جریان نانوسیال و اعمال میدان مغناطیسی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانش‌آموخته مقطع دکتری، گروه مهندسی مکانیک، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه مهندسی مکانیک، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

10.22044/jsfm.2024.14036.3828

چکیده

در این مطالعه، عملکرد هیدرولیکی-حرارتی یک کانال موجی نیمه‌متخلخل با جریان نانوسیال و اِعمال میدان مغناطیسی ارزیابی شده است. میدان مغناطیسی عمود بر کانال اِعمال شده است. جریان نانوسیال در این طرح، به صورت تک‌فاز، تراکم‌ناپذیر و دائم در نظر گرفته شده است. محدوده‌ی عدد هارتمن و عدد دارسی به ترتیب 10≤ Ha ≤0 و 2-10≤ Da ≤ 5-10 است. نانوذرات اکسید منیزیم در چهار کسر حجمی مختلف (0، 2، 4 و 5 درصد) مورد بررسی قرار گرفته است. معادلات حاکم، به روش حجم محدود حل شده است. بر اساس نتایج به دست آمده، افزایش کسرحجمی نانوذرات و موج کانال باعث بهبود انتقال حرارت خواهد شد. در یک رینولدز ثابت، افزایش تعداد موج کانال از 4 تا 6 موجب کاهش 8/7 درصدی عملکرد هیدرولیکی-حرارتی شده است. افزایش نفوذپذیری در محیط متخلخل، سبب تشدید عدد ناسلت و کاهش اصطکاک شده است. بهترین عملکرد هیدرولیکی-حرارتی در عدد دارسی 01/0 به مقدار 08/10 و کمترین آن در عدد دارسی 00001/0 به مقدار 52/0 است. همچنین، وجود میدان مغناطیسی تأثیر مثبتی بر عملکرد حرارتی داشته است. نتایج حاصل از این مطالعه می‌تواند در طراحی مبدل‌های حرارتی، راه‌گشا باشد.

کلیدواژه‌ها

موضوعات


[1] Saidur, R. Leong, K. Y. and Mohammed, H. A. (2011) A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev, 15, 1646–1668.  
[2] Arora, N. Gupta, M. (2022) An experimental study on heat transfer and pressure drop analysis of Al2O3/water nanofluids in a circular tube. Mater. Today Proc, 69, 199-204.
 [3] Avinash-Kumar, R. Kavitha, M. and Manoj Kumar, P. (2021) Numerical study of graphene-platinum hybrid nanofluid in microchannel for electronics cooling, Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng. Sci, 235, 5845-5857.
[4] Moslemi, M. Mahmoodnezhad, M. Edalatpanah, SA. Mohammed-Zubair, SA. Wahed-Khalifa, HA. (2023) Magnetic Field Effect and Heat Transfer of Nanofluids within Waveform Microchannel. Comput. Model. Eng. Sci, 134. 1957–1973.
[5] Moradi, T. Shahbazian, H. Hoseinalipour, M. Sunden, B. (2023) Effects of wavy ribs on vortex generation and thermal-hydraulic performance in a rotating rectangular channel. Appl. Therm. Eng, 222. 119952.
[6] Mehta, S.K. Pati, S. and Baranyi, L. (2022) Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel. Case Stud. Therm. Eng, 31. 101796.
[7] جمارانی، ع.، معرفت، م.، اسحق نیموری، م. (2015) معرفی تعریف عدد ناسلت مناسب برای جریان سیال در یک لوله‌ با ماده متخلخل جزئی. نشریه مهندسی مکانیک مدرس. 15 (6)، 278-286.
[8] Yaerramlle, V. Premachandran, B. and Talukdar, P. (2021) Mixed Convection From a Heat Source in a Channel with a Porous Insert: A Numerical Analysis Based on Local Thermal Non-Equilibrium Model. Therm. Sci. Eng. Prog, 25. 101010.
[9] پورموید، ع.، ولی­پور، م. ص.، رحمتی، ع.، و رحمانی، ر. (2014). بررسی عددی تأثیرات میدان مغناطیسی مماسی و ثابت بر جریان و انتقال حرارت از یک استوانه پوشیده شده با نوار متخلخل، نشریه مکانیک سازه­ها و شاره­ها. 4 (4)، 191-205.
[10] Ibrahim, M. Saeed, T. Bani, F.R. Sedeh, S.N. Chu, Y. M. and Toghraie, D. (2021) Two-phase Analysis of Heat Transfer and Entropy Generation of Water-based Magnetite Nanofluid Flow in a Circular Microtube with Twisted Porous Blocks under a Uniform Magnetic Field. Powder Technol, 384. 522–541.
[11] رحمتی، ا.، نجارنظامی، ا. (2017). شبیه­سازی جریان جابجایی طبیعی نانوسیال در یک محفظه شیبدار تحت میدان مغناطیسی به روش شبکه بولتزمن، نشریه مهندسی مکانیک امیرکبیر. 49 (3)، 604-595.
[12] Kefayati, GH. R. (2013) Lattice Boltzmann simulation of MHD natural convection in a nano fl uid- fi lled cavity with sinusoidal temperature distribution. Powder Technol, 243. 171-183.
[13] Bhattacharyya, S. Sharma, AK. Vishwakarma, DK. Goel, V. (2023) Influence of magnetic baffle and magnetic nanofluid on heat transfer in a wavy minichannel. Sustain. Energy Technol. Assessments, 56. 102954. 
[14] Benos, L. and Sarris, I.E. (2019) Analytical Study of the Magnetohydrodynamic Natural Convection of a Nanofluid Filled Horizontal Shallow Cavity with Internal Heat Generation. Int. J. Heat Mass Transf, 130. 862-873.
[15] Erdem, M. and Varol, Y. (2020) Numerical Investigation of Heat Transfer and Flow Characteristics of MHD Nano-fluid Forced Convection in a Pipe, J. Therm. Anal. Calorim, 139. 3879–3909.        
[16] Han, L. Lu, C. Yumashev, A. Bahrami, D. Kalbasi, R. Jahangiri, M. and Mosavi, A. (2021) Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. Eng. Appl. Comput. Fluid Mech, 15. 1746–1760.  
[17] Kalpana, G. Madhura, KR. and Kudenatti, RB. (2022) Magnetohydrodynamic boundary layer flow of hybrid nanofluid with the thermophoresis and Brownian motion in an irregular channel: A numerical approach. Eng. Sci. Technol, 32. 101075.
[18] Elsaid, EM. and Abdel-wahed. (2022)MHD mixed convection Ferro Fe3O4/Cu-hybrid-NF runs in a vertical channel. Chin. J. Phys, 76 . 269–282.
[19] Mohammadi, S. Azimi, N. and Khazaei M. (2022) CFD simulation of the effect of magnetic field on convective heat transfer and ferrofluid flow inside a pipe. J. Mode . Engine, 20. 155–166.
 
[20] Sheikhpour N, Mirabdolah Lavasani A, Salehi G (2022) Study the Effects of Magnetic Field and Porous Medium on Heat Transfer and Flow of a Nanofluid in a Wavy Channel. J. Mode . Engine, 20 (71): 13–25.
[21] Demagh, Y. Bordja, I. Kabar, Y. and Benmoussa, H. (2015) A design method of an S-curved parabolic trough collector absorber with a three-dimensional heat flux density distribution. Sol. Energy, 122. 873-884.
[22] نوری، ر.، گرجی، م.، دمیری گنجی، د. (2014). بررسی عددی اثر میدان مغناطیسی بر انتقال حرارت اجباری نانوسیال در یک کانال سینوسی شکل، نشریه مهندسی مکانیک مدرس. 13 (14)، 43-55.
[23] Ashorynejad H.R. and Zarghami (2018) A. Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel. Int. J. Heat Mass Transf, 119 .247-258.
[24] Nazari, S. and Toghraie, D. (2017) Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium. Physica E, 87. 134–140.
[25] Kays, W.M. and London, AL.Compact heat exchangers. 3rd ed. Melbourne. Kreiger Publishing, 1984.
[26] Khoshvaght-Aliabadi, M. (2014) Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers Manag, 88. 96–105.
[27] Mceuen, P.L. Fuhrer, M.S. and Park H. (2002) Single-Walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnol, 1. 78-85.
[28] Minea A.A. and El-Maghlany W.M. (2018) Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew. Energy, 120. 350–364.
[29] A. Fluent, (2011) Ansys fluent theory guide, ANSYS Inc., USA, vol. 15317, pp. 724–746.
[30] Silva R.A. and De Lemos, M.J.S. (2003) Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf, 46. 5113-5121.