تحلیل ترمودینامیکی یک سامانه آب‌شیرین‌کن HDH با چرخه تبرید جذبی خورشیدی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، مازندران، ایران

2 عضو هیات علمی - دانشگاه صنعتی نوشیروانی بابل

3 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

چکیده

در این مقاله، یک چرخه رطوبت‎زن-رطوبت‎زدای HDH با رطوبت‎زدای تماس‎مستقیم با سامانه تبرید جذبی (ARS) تک اثره خورشیدی مورد مطالعه قرار می‌گیرد. سامانه‌های تبرید جذبی که دارای طراحی سازگار با محیط زیست هستند، با توجه به استفاده از زیست توده، انرژی خورشیدی و انرژی زمین‌گرمایی جهت تامین سرمایش سامانه‌های مختلف مورد توجه قرار گرفته‌اند. با پیاده‎سازی یک مدل ریاضی، عملکرد سامانه تحت شرایط کاری مختلف بررسی شد. برای گنجاندن اثر واحد‌های رطوبت‎زنی و رطوبت‎زدایی در مدل‎سازی نظری، از همبستگی ε-NTU برای بررسی انتقال گرما و جرم در سامانه مذکور استفاده شد. پارامترهای عملکردی مانند، نسبت بازیابی (RR) و ضریب عملکرد (COP) و نسبت بهره خروجی (GOR) جهت ارزیابی عملکرد سامانه به کار گرفته‌شد. وضعیت سامانه HDH هیبریدی با سامانه تبرید جذبی در کنار سناریو‌های مختلف سرمایشی بررسی گردید. نشان داده شده است که با تغییر نسبت آب شور ورودی به آب شیرین یا آب شور به هوای خشک، یک سیستم HDH را می‌توان بدون نیاز به بار خنک کننده اضافی، به سامانه تبرید جذبی از نوع آب-آمونیاک ترکیب کرد و به مقدار نسبت بازیابی مناسب دست‌یافت. برای عدم نیاز به بار سرمایشی اضافی، می‌توان سامانه را در محدوده‌ی کمتر از mr_h=۲/۵ و بیشتر از mr_h=۴/۲ راه‌اندازی کرد.

کلیدواژه‌ها

موضوعات


[1] Rezaei Rad, M., et al., (2023) An experimental study to evaluate the performance of an HDH water desalination system with a thermoelectric condenser. Renewable Energy Research and Applications.
[2] Aghajani Afghan, S., et al., (2023) An Experimental Study to Apply an Absorption Refrigeration Cycle as a Dehumidifier in Humidification-Dehumidification Solar Desalination System. Iranian (Iranica) J. Energ. Env.. 14(4): p. 361-371.
]3[ غضنفری ججین، المیرا و غائبی، هادی،1397،مدلسازی ترمودینامیکی آب شیرین کن رطوبت زن-رطوبت زدا،اولین دوره همایش ملی مدل سازی وفناوری‌های جدید در مدیریت آب، بیرجند.
[4] Garcia-Rodriguez, L., (2002) Seawater desalination driven by renewable energies: a review. Desalination. 143(2): p. 103-113.
]5[ انوری، محمدعرفان و فقیه خراسانی، احمدرضا و نظری، محمدرضا،1402،شبیه سازی عددی بخش رطوبت زن یک دستگاه آب شیرین کن به روش رطوبت زن-رطوبت زدا،سی و یکمین همایش سالانه بین­ المللی مهندسی مکانیک ایران و نهمین همایش صنعت نیروگاهی ایران،تهران،https://civilica.com/doc/1668491.
[6] Narayan, G.P., et al., (2010) The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renewable and sustainable energy reviews. 14(4): p. 1187-1201.
[7] Kabeel, A., T. (2013) Abou Elmaaty, and E.M. El-Said, Economic analysis of a small-scale hybrid air HDH–SSF (humidification and dehumidification–water flashing evaporation) desalination plant. Energy. 53: p. 306-311.
]8[ کیخواه آریا، فاطمه و دهقانی محمدآبادی، مصطفی و فراهت، سعید و نیک بخت، مجتبی،(1400) ،مطالعه آزمایشگاهی بر روی آب شیرین کن خورشیدی متصل به رطوبت زن ستون حباب،چهارمین کنفرانس بین المللی مدیریت،بهینه سازی و توسعه زیرساخت های انرژی،تهران،https://civilica.com/doc/1259848.
[9] Farid, M., et al., (2003) Solar desalination with a humidification-dehumidification cycle: mathematical modeling of the unit. Desalination,. 151(2): p. 153-164.
[10] Müller-Holst, H., et al., (1998) Solarthermal seawater desalination systems for decentralised use. Renewable Energy. 14(1-4): p. 311-318.
[11] Yamalı, C. and İ. Solmus, (2008) A solar desalination system using humidification–dehumidification process: experimental study and comparison with the theoretical results. Desalination. 220(1-3): p. 538-551.
[12] He, W., et al., (2017) Performance analysis of a water-power combined system with air-heated humidification dehumidification process. Energy. 130: p. 218-227.
[13] Kabeel, A. and E.M. El-Said, (2013) A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part I. A numerical investigation. Desalination. 320: p. 56-72.
[14] Elminshawy, N.A., F.R. Siddiqui, and M.F. Addas, (2016) Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy. Energy conversion and management. 126: p. 608-621.
[15] El-Dessouky, H.T., (1989) Humidification-dehumidification desalination process using waste heat from a gas turbine. Desalination. 71(1): p. 19-33.
]16[احمدی، ثمره و غایبی، هادی، (1397)،بررسی ترمودینامیکی انواع سیستم آب شیرین کن رطوبت زن- رطوبت زدا تک هیتر از نوع آب باز- هوابسته،دوازدهمین همایش بین المللی انرژی،تهران،https://civilica.com/doc/848635.
[17] Bharathan, D., B.K. Parsons, and J.A. Althof, Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings. 1988, Solar Energy Research Inst., Golden, CO (USA).
[18] Klausner, J.F., Y. Li, and R. Mei, (2006) Evaporative heat and mass transfer for the diffusion driven desalination process. Heat and mass transfer. 42: p. 528-536.
[19] Li, Y., J.F. Klausner, and R. Mei, (2006) Performance characteristics of the diffusion driven desalination process. Desalination. 196(1-3): p. 188-209.
[20] Li, Y., et al., (2006) Direct contact condensation in packed beds. Int. J. Heat Mass Tra.. 49(25-26): p. 4751-4761.
[21] Alnaimat, F., J.F. Klausner, and R. Mei, (2011) Transient analysis of direct contact evaporation and condensation within packed beds. Int. J heat mass trans., 2011. 54(15-16): p. 3381-3393.
[22]Alnaimat, F. and J.F. Klausner, (2012) Solar diffusion driven desalination for decentralized water production. Desalination. 289: p. 35-44.
[23] Alnaimat, F., J.F. Klausner, and R. Mei, (2013) Transient dynamic response of solar diffusion driven desalination. Applied thermal engineering. 51(1-2): p. 520-528.
[24] Eslamimanesh, A. and M. Hatamipour, (2009) Mathematical modeling of a direct contact humidification–dehumidification desalination process. Desalination,. 237(1-3): p. 296-304.
[25] Eslamimanesh, A. and M. Hatamipour, (2010) Economical study of a small-scale direct contact humidification–dehumidification desalination plant. Desalination. 250(1): p. 203-207.
[26] Niroomand, N., M. Zamen, and M. Amidpour, (2015) Theoretical investigation of using a direct contact dehumidifier in humidification–dehumidification desalination unit based on an open air cycle. Desalination and Water Treatment. 54(2): p. 305-315.
[27] Mehrgoo, M. and M. Amidpour, (2012) Constructal design and optimization of a direct contact humidification–dehumidification desalination unit. Desalination. 293: p. 69-77.
[28] Ettouney, H., (2005) Design and analysis of humidification dehumidification desalination process. Desalination. 183(1-3): p. 341-352.
[29] He, W., et al., (2017) Parametric analysis of a humidification dehumidification desalination system using a direct-contact dehumidifier. Int. J. Therm. Sci. 120: p. 31-40.
[30] He, W., D. Han, and C. Ji, (2018) Investigation on humidification dehumidification desalination system coupled with heat pump. Desalination. 436: p. 152-160.
[31] Lawal, D., et al., (2018) Humidification-dehumidification desalination system operated by a heat pump. Energy Conversion and Management. 161: p. 128-140.
[32] Lawal, D.U., S.M. Zubair, and M.A. Antar, (2018) Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP). Desalination. 443: p. 11-25.
[33] Queiroz, L.A.L., et al., (2011) Water purification system using a heat pump. Applied thermal engineering. 31(16): p. 3354-3357.
[34] Xu, H., et al., (2018) Experimental investigation on a solar assisted heat pump desalination system with humidification-dehumidification. Desalination,. 437: p. 89-99.
[35] Zhai, C. and W. Wu, (2022) Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources. Energy. 239: p. 122193.
[36] Altun, A. and M. Kilic, (2020) Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey. Renewable Energy. 152: p. 75-93.
[37] Ibrahim, N.I., et al., (2021) Economic analysis of a novel solar-assisted air conditioning system with integral absorption energy storage. J. Cleaner Produc. 291: p. 125918.
[38] Uçkan, İ. and A.A. Yousif, (2021) Investigation of the effect of various solar collector types on a solar absorption cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 43(7): p. 875-892.
[39] Allouhi, A., et al., (2015) Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews. 44: p. 159-181.
[40] Narayan, G.P., M.G.S. John, and S.M. Zubair, (2013) Thermal design of the humidification dehumidification desalination system: An experimental investigation. Int. J. Heat Mass Trans.. 58(1-2): p. 740-748.
[41] Narayan, G.P., et al., (2010) Thermodynamic analysis of humidification dehumidification desalination cycles. Desalination and water treatment, 2010. 16(1-3): p. 339-353.
[42] Merkel, F., Verdunstungskühlung. 1925: Vdi-Verlag.
[43] Jaber, H. and R. Webb, (1989) Design of cooling towers by the effectiveness-NTU method..
[44] Narayan, G.P., et al., (2010) Energy effectiveness of simultaneous heat and mass exchange devices.
[45] Sharqawy, M.H., et al., (2014) Optimum thermal design of humidification dehumidification desalination systems. Desalination,. 349: p. 10-21.
[46] Nawayseh, N.K., et al., (1999) Solar desalination based on humidification process—II. Computer simulation. Energy conversion and management. 40(13): p. 1441-1461.
 
[47] Ashrae, A.H.F. and G. Atlanta, (2009)American society of Heating. Refrigerating and Air-Conditioning Engineers. 1.
[48] Klein, S., (2013)Engineering equation solver version 9. F-Chart software.
[49] Hyland, R. and A. Wexter, (1983) Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE transactions. 89: p. 500-519.
[50] Wagner, W. and A. Pruß, (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. phys. chem. reference data. 31(2): p. 387-535.