[1] Rezaei Rad, M., et al., (2023) An experimental study to evaluate the performance of an HDH water desalination system with a thermoelectric condenser. Renewable Energy Research and Applications.
[2] Aghajani Afghan, S., et al., (2023) An Experimental Study to Apply an Absorption Refrigeration Cycle as a Dehumidifier in Humidification-Dehumidification Solar Desalination System. Iranian (Iranica) J. Energ. Env.. 14(4): p. 361-371.
]3[ غضنفری ججین، المیرا و غائبی، هادی،1397،مدلسازی ترمودینامیکی آب شیرین کن رطوبت زن-رطوبت زدا،اولین دوره همایش ملی مدل سازی وفناوریهای جدید در مدیریت آب، بیرجند.
[4] Garcia-Rodriguez, L., (2002) Seawater desalination driven by renewable energies: a review. Desalination. 143(2): p. 103-113.
]5[ انوری، محمدعرفان و فقیه خراسانی، احمدرضا و نظری، محمدرضا،1402،شبیه سازی عددی بخش رطوبت زن یک دستگاه آب شیرین کن به روش رطوبت زن-رطوبت زدا،سی و یکمین همایش سالانه بین المللی مهندسی مکانیک ایران و نهمین همایش صنعت نیروگاهی ایران،تهران،
https://civilica.com/doc/1668491.
[6] Narayan, G.P., et al., (2010) The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renewable and sustainable energy reviews. 14(4): p. 1187-1201.
[7] Kabeel, A., T. (2013) Abou Elmaaty, and E.M. El-Said, Economic analysis of a small-scale hybrid air HDH–SSF (humidification and dehumidification–water flashing evaporation) desalination plant. Energy. 53: p. 306-311.
]8[ کیخواه آریا، فاطمه و دهقانی محمدآبادی، مصطفی و فراهت، سعید و نیک بخت، مجتبی،(1400) ،مطالعه آزمایشگاهی بر روی آب شیرین کن خورشیدی متصل به رطوبت زن ستون حباب،چهارمین کنفرانس بین المللی مدیریت،بهینه سازی و توسعه زیرساخت های انرژی،تهران،
https://civilica.com/doc/1259848.
[9] Farid, M., et al., (2003) Solar desalination with a humidification-dehumidification cycle: mathematical modeling of the unit. Desalination,. 151(2): p. 153-164.
[10] Müller-Holst, H., et al., (1998) Solarthermal seawater desalination systems for decentralised use. Renewable Energy. 14(1-4): p. 311-318.
[11] Yamalı, C. and İ. Solmus, (2008) A solar desalination system using humidification–dehumidification process: experimental study and comparison with the theoretical results. Desalination. 220(1-3): p. 538-551.
[12] He, W., et al., (2017) Performance analysis of a water-power combined system with air-heated humidification dehumidification process. Energy. 130: p. 218-227.
[13] Kabeel, A. and E.M. El-Said, (2013) A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part I. A numerical investigation. Desalination. 320: p. 56-72.
[14] Elminshawy, N.A., F.R. Siddiqui, and M.F. Addas, (2016) Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy. Energy conversion and management. 126: p. 608-621.
[15] El-Dessouky, H.T., (1989) Humidification-dehumidification desalination process using waste heat from a gas turbine. Desalination. 71(1): p. 19-33.
]16[احمدی، ثمره و غایبی، هادی، (1397)،بررسی ترمودینامیکی انواع سیستم آب شیرین کن رطوبت زن- رطوبت زدا تک هیتر از نوع آب باز- هوابسته،دوازدهمین همایش بین المللی انرژی،تهران،
https://civilica.com/doc/848635.
[17] Bharathan, D., B.K. Parsons, and J.A. Althof, Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings. 1988, Solar Energy Research Inst., Golden, CO (USA).
[18] Klausner, J.F., Y. Li, and R. Mei, (2006) Evaporative heat and mass transfer for the diffusion driven desalination process. Heat and mass transfer. 42: p. 528-536.
[19] Li, Y., J.F. Klausner, and R. Mei, (2006) Performance characteristics of the diffusion driven desalination process. Desalination. 196(1-3): p. 188-209.
[20] Li, Y., et al., (2006) Direct contact condensation in packed beds. Int. J. Heat Mass Tra.. 49(25-26): p. 4751-4761.
[21] Alnaimat, F., J.F. Klausner, and R. Mei, (2011) Transient analysis of direct contact evaporation and condensation within packed beds. Int. J heat mass trans., 2011. 54(15-16): p. 3381-3393.
[22]Alnaimat, F. and J.F. Klausner, (2012) Solar diffusion driven desalination for decentralized water production. Desalination. 289: p. 35-44.
[23] Alnaimat, F., J.F. Klausner, and R. Mei, (2013) Transient dynamic response of solar diffusion driven desalination. Applied thermal engineering. 51(1-2): p. 520-528.
[24] Eslamimanesh, A. and M. Hatamipour, (2009) Mathematical modeling of a direct contact humidification–dehumidification desalination process. Desalination,. 237(1-3): p. 296-304.
[25] Eslamimanesh, A. and M. Hatamipour, (2010) Economical study of a small-scale direct contact humidification–dehumidification desalination plant. Desalination. 250(1): p. 203-207.
[26] Niroomand, N., M. Zamen, and M. Amidpour, (2015) Theoretical investigation of using a direct contact dehumidifier in humidification–dehumidification desalination unit based on an open air cycle. Desalination and Water Treatment. 54(2): p. 305-315.
[27] Mehrgoo, M. and M. Amidpour, (2012) Constructal design and optimization of a direct contact humidification–dehumidification desalination unit. Desalination. 293: p. 69-77.
[28] Ettouney, H., (2005) Design and analysis of humidification dehumidification desalination process. Desalination. 183(1-3): p. 341-352.
[29] He, W., et al., (2017) Parametric analysis of a humidification dehumidification desalination system using a direct-contact dehumidifier. Int. J. Therm. Sci. 120: p. 31-40.
[30] He, W., D. Han, and C. Ji, (2018) Investigation on humidification dehumidification desalination system coupled with heat pump. Desalination. 436: p. 152-160.
[31] Lawal, D., et al., (2018) Humidification-dehumidification desalination system operated by a heat pump. Energy Conversion and Management. 161: p. 128-140.
[32] Lawal, D.U., S.M. Zubair, and M.A. Antar, (2018) Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP). Desalination. 443: p. 11-25.
[33] Queiroz, L.A.L., et al., (2011) Water purification system using a heat pump. Applied thermal engineering. 31(16): p. 3354-3357.
[34] Xu, H., et al., (2018) Experimental investigation on a solar assisted heat pump desalination system with humidification-dehumidification. Desalination,. 437: p. 89-99.
[35] Zhai, C. and W. Wu, (2022) Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources. Energy. 239: p. 122193.
[36] Altun, A. and M. Kilic, (2020) Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey. Renewable Energy. 152: p. 75-93.
[37] Ibrahim, N.I., et al., (2021) Economic analysis of a novel solar-assisted air conditioning system with integral absorption energy storage. J. Cleaner Produc. 291: p. 125918.
[38] Uçkan, İ. and A.A. Yousif, (2021) Investigation of the effect of various solar collector types on a solar absorption cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 43(7): p. 875-892.
[39] Allouhi, A., et al., (2015) Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews. 44: p. 159-181.
[40] Narayan, G.P., M.G.S. John, and S.M. Zubair, (2013) Thermal design of the humidification dehumidification desalination system: An experimental investigation. Int. J. Heat Mass Trans.. 58(1-2): p. 740-748.
[41] Narayan, G.P., et al., (2010) Thermodynamic analysis of humidification dehumidification desalination cycles. Desalination and water treatment, 2010. 16(1-3): p. 339-353.
[42] Merkel, F., Verdunstungskühlung. 1925: Vdi-Verlag.
[43] Jaber, H. and R. Webb, (1989) Design of cooling towers by the effectiveness-NTU method..
[44] Narayan, G.P., et al., (2010) Energy effectiveness of simultaneous heat and mass exchange devices.
[45] Sharqawy, M.H., et al., (2014) Optimum thermal design of humidification dehumidification desalination systems. Desalination,. 349: p. 10-21.
[46] Nawayseh, N.K., et al., (1999) Solar desalination based on humidification process—II. Computer simulation. Energy conversion and management. 40(13): p. 1441-1461.
[47] Ashrae, A.H.F. and G. Atlanta, (2009)American society of Heating. Refrigerating and Air-Conditioning Engineers. 1.
[48] Klein, S., (2013)Engineering equation solver version 9. F-Chart software.
[49] Hyland, R. and A. Wexter, (1983) Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE transactions. 89: p. 500-519.
[50] Wagner, W. and A. Pruß, (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. phys. chem. reference data. 31(2): p. 387-535.