[1] Hedayatizadeh, M., Y. Ajabshirchi, F. Sarhaddi, A. Safavinejad, S. Farahat, and H. Chaji. 2013. Thermal and electrical assessment of an integrated solar photovoltaic thermal (PV/T) water collector equipped with a compound parabolic concentrator (CPC). Int. J. Green Energ. 10:494–522.
[2] Cabeza, L. F., M. Ibanez, C. Sole, J. Roca, and M. Nogue´s. 2006. Experimentation with a water tank, including a PCM module. Solar Energy Materials and Solar Cells 90:1273–82.
[3] Kousksou, T., P. Bruel, G. Cherreau,V. Leoussoff, and T. El Rhafiki. 2011. PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Solar Energy 85:2033–40.
[4] Fazilati, M.A., and A. A. Alemrajabi. 2013. Phase change material for enhancing solar water heater, an experimental approach. Energy Conversion and Management 71:138–45.
[5] Talmatsky, E., and A. Kribus. 2008. PCM storage for solar DHW: An unfulfilled promise. Solar Energy 82:861–69
[6] Huang, M. J., P. C. Eames, S. McCormack, P. Grifflths, and N. J. Hewitt. 2011. Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system. Renewable Energy 36:2932–39.
[7] Wu, S., G. Fang, and X. Liu. 2011. Dynamic discharging characteristic simulation on solar heat storage system with spherical capsules using paraffln as heat storage material. Renewable Energy 36:1190–95.
[8] Rezania, A., H. Taherian, and D. D. Ganji. 2012. Experimental investigation of a natural circulation solar domestic water heater performance under standard consumption rate. Int. J. Green Energ. 9:322–34.
[9] Mazman, M., F. Luisa, L. F. Cabeza, H. Mehling, M. Nogues, H. Evliya, and H. O. Paksoy. 2009. Utilization of phase change materials in solar domestic hot water systems. Renewable Energy 34:1639–43.
[10] Rosen, M. A. 2001. The exergy of stratified thermal energy storages. Solar Energy 71:173–85.
[11] Castell, A., C. Sole, M. Medrano, J. Roca, L. F. Cabeza, and D. Garcia. 2008. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Applied Thermal Engineering 28:1676–86.
[12] Awani, ., R. Chargui, and B. Tashtoush. 2021. Experimental nd numerical evaluation of a new design of a solar thermosyphon water heating system with phase change material. J. Energ. Stor. 41,102948.
[13] Fahad, F. S. and I. Koc . 2022. An experimental study to improve solar heating water using PCM and integrated with helical heat exchanger. Basrah J. Eng. Sci., Vol. 22, No. 2, 72-79.
[14] Syahruddin, A., Jalaluddin and A. Hayat. 2020. Performance analysis of solar water heating system with plate collector integrated PCM storage. Int. J. of Eng.. pISSN 2615-5109 Volume 3, Number 2, pp. 143-149.
[15] Halim, A., Jalaluddin, A. A. Mochtar and E. Arif. Performance investigation of solar water heating system integrated with PCM storage. 2020. J. Mech. Eng. Research and Developments. Vol. 43, No. 3, pp. 291-300.
[16] Omara, A., A., M., et al. Energy and exergy analysis of solar water heating system integrated with phase change material (PCM). 2018. International Conference on Computer, Control, Electrical, and Electronics Engineering.
[17] H. Niyas, C.R.C. Rao, P. Muthukumar, Performance investigation of wania lab-scale latent heat storage prototype – experimental results, Sol. Energy 155 (2017) 971–984.
[18] S. Seddegh, M.M. Joybari, X. Wang, F. Haghighat, Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system, Sustain. Cities Soc. 35 (2017) 13–24.
[19] M.M. Joybari, F. Haghighat, S. Seddegh, Y. Yuan, Simultaneous charging and discharging of phase change materials: development of correlation for liquid fraction, Sol. Energy 188 (2019) 788–798.
[20] S.P. Jesumathy, M. Udayakumar, S. Suresh, S. Jegadheeswaran, An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit, J. Taiwan Inst. Chem. Eng. 45 (2014) 1298–1306.
[21] R. Anish, V. Mariappan, M. Mastani Joybari, Experimental investigation on the melting and solidification behavior of erythritol in a horizontal shell and multi-finned tube latent heat storage unit, Appl. Therm. Eng. 161 (2019) 114194.
[22] M. Kabbara, D. Groulx, A. Joseph, A parametric experimental investigation of the heat transfer in a coil-in-tank latent heat energy storage system, Int. J. Therm. Sci. 130 (2018) 395–405.
[23] F. Agyenim, the use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H 2 O absorption cooling systems, Renew. Energy 87 (2016) 229–239.
[24] D.K. Johar, D. Sharma, S.L. Soni, P.K. Gupta, R. Goyal, Experimental investigation on latent heat thermal energy storage system for stationary C.I. engine exhaust, Appl. Therm. Eng. 104 (2016) 64–73.
[25] Y. Wang, L. Wang, N. Xie, X. Lin, H. Chen, Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit, Int. J. Heat Mass Tran. 99 (2016) 770–781.
[26] A. Al-Abidi, S. Mat, K. Sopian, Y. Sulaiman, A. Mohammad, Heat transfer enhancement for PCM thermal energy storage in triplex tube heat exchanger, Heat Tran. Eng. 37 (2016) 705–712.
[27] M. Rezaei, M.R. Anisur, M.H. Mahfuz, M.A. Kibria, R. Saidur, I.H.S.C. Metselaar, Performance and cost analysis of phase change materials with different melting temperatures in heating systems, Energy 53 (2013) 173–178.