بهبود انتقال حرارت جابه‌جایی ترکیبی فلز مایع در یک چاه حرارتی تک کانالی تحت میدان مغناطیسی خارجی یکنواخت

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

بارزترین ویژگی چاه‌های حرارتی، قابلیت انتقال گرما و خاصیت خنک‌کنندگی آن‌ها است. در این پژوهش از یک چاه حرارتی فعال تک کانالی عمودی با سیال فلز مایع گالینستن استفاده شده و گسسته‌سازی معادلات ناویراستوکس به روش حجم محدود مرتبه دوم بالادست انجام شده است. بررسی انتقال حرارت جابه‌جایی ترکیبی با اعداد ریچاردسون 0/45 و 1 و 10 به دو صورت جهت جریان از بالابه‌پایین و جهت جریان از پایین‌به‌بالا صورت گرفته و به اثرات میدان مغناطیسی خارجی در دو جهت عمود بر محور جریان پرداخته شده است. نتایج نشان داد جهت جریان از پایین‌به‌بالا با عدد ریچاردسون 10 بدون حضور میدان مغناطیسی، عدد ناسلت را 11/30 درصد نسبت به جهت جریان از بالابه‌پایین بهبود داده است. با عدد ریچاردسون 1 و جهت جریان از پایین‌به‌بالا، اثر اعمال میدان مغناطیسی در جهت Z (عمود بر محور جریان) با عدد هارتمن 129، 164/5 و 194 به ترتیب 11/29، 13/63 و 15/88 درصد عدد ناسلت را بهبود بخشیده است. با عدد ریچاردسون 1 و جهت جریان از پایین‌به‌بالا، اثر اعمال میدان مغناطیسی در جهت X (عمود بر محور جریان) با عدد هارتمن 64/6، 129 و 194 به ترتیب 7/08، 8/28 و 8/76 درصد عدد ناسلت را بهبود بخشیده است.

کلیدواژه‌ها

موضوعات


  • Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron device letters, 2(5), 126-129.‏
  • Qu, W., & Mudawar, I. (2002). EXperimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. heat mass trans., 45(12), 2549-2565.‏
  • Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International communications in heat and mass transfer, 37(8), 1078-1086.‏
  • Guo, Y., Zhu, C. Y., Gong, L., & Zhang, Z. B. (2023). Numerical simulation of flow boiling heat transfer in microchannel with surface roughness. Int. J. Heat Mass Trans., 204, 123830.‏
  • Sepehrnia, M., & Rahmati, A. (2018). Numerical investigating the gas slip flow in the microchannel heat sink using different materials. Challenges in Nano and Micro Scale Science and Technology, 6(Special Issue), 44-50.‏
  • Kumar, R., Singh, G., & MikielewicZ, D. (2018). A new approach for the mitigating of flow maldistribution in parallel microchannel heat sink. J. Heat Trans., 140(7), 072401.‏
  • Li, X. Y., Wang, S. L., Wang, X. D., & Wang, T. H. (2019). Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks. International J. Thermal Sci., 137, 616-626.‏
  • Shomali, M., & Rahmati, A. (2020). Numerical analysis of gas flows in a microchannel using the Cascaded Lattice BoltZmann Method with varying Bosanquet parameter. J. Heat Mass Trans. Research, 7(1), 25-38.‏
  • Wang, S. L., Chen, L. Y., Zhang, B. X., Yang, Y. R., & Wang, X. D. (2020). A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs. J. Therm. Analy. and Calorimetry, 141, 547-558.
  • Hamidi, E., Ganesan, P., Muniandy, S. V., & Hassan, M. A. (2022). Lattice BoltZmann Method simulation of flow and forced convective heat transfer on 3D micro X-ray tomography of metal foam heat sink. Int. J. Therm. Sci., 172, 107240.‏
  • KeshavarZ, M., Habibi, S., & Amini, Y. (2023). Heat transfer enhancement in a microchannel using active vibrating pieZoelectric vorteX generator. J. Solid and Fluid Mechanics, 12(6), 191-204.‏
  • Chein, R., & Huang, G. (2005). Analysis of microchannel heat sink performance using nanofluids. Applied thermal engineering, 25(17-18), 3104-3114.‏
  • DarZi, A. R., Farhadi, M., Sedighi, K., Aallahyari, S., & Delavar, M. A. (2013). Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: numerical study. International Communications in Heat and Mass Transfer, 41, 68-75.‏
  • Sohel, M. R., KhaleduZZaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M., & Mahbubul, I. M. (2014). An eXperimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int. J. Heat Mass Trans., 74, 164-172.‏
  • Ho, C. J., Wei, L. C., & Li, Z. W. (2010). An eXperimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, 30(2-3), 96-103.‏
  • Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink. J. Molecular Liqu., 230, 550-556.‏
  • Teimouri, A., Nejati, V., Zahmatkesh, I., & Saleh, S. R. (2023). Numerical investigation of two-phase nanofluid flow in square cavity with inclined wall under different magnetic field. J. Solid Fluid Mech., 13(1), 125-136.‏
  • Kumar, R., Tiwary, B., & Singh, P. K. (2022). Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Applied Thermal Engineering, 201, 117787.‏
  • Miner, A., & Ghoshal, U. (2004). Cooling of high-power-density microdevices using liquid metal coolants. Applied physics letters, 85(3), 506-508.‏
  • Hodes, M., Zhang, R., Lam, L. S., WilcoXon, R., & Lower, N. (2013). On the potential of galinstan-based minichannel and minigap cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(1), 46-56.‏
  • Xie, G., Chen, Z., Sunden, B., & Zhang, W. (2013). Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks. Numerical Heat Transfer, Part A: Applications, 63(3), 201-225.‏
  • Zhang, R., Hodes, M., Lower, N., & WilcoXon, R. (2015). Water-Based Microchannel and Galinstan-Based Minichannel Cooling Beyond 1 kW/cm $^{2} $ Heat FluX. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(6), 762-770.‏
  • Wu, T., Wang, L., Tang, Y., Yin, C., & Li, X. (2022). Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions. Micromachines, 13(1), 95.‏
  • Wang, Z. H., & Zhou, Z. K. (2019). EXternal natural convection heat transfer of liquid metal under the influence of the magnetic field. Int. J. Heat Mass Trans., 134, 175-184.‏
  • Shi, X., Li, S., Mu, Y., & Yin, B. (2019). Geometry parameters optimiZation for a microchannel heat sink with secondary flow channel. International Communications in Heat and Mass Transfer, 104, 89-100.‏
  • Wang, T. H., Wu, H. C., Meng, J. H., & Yan, W. M. (2020). OptimiZation of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. Int. J. Heat and Mass Trans., 149, 119217.‏
  • Hajmohammadi, M. R., GholamreZaie, S., Ahmadpour, A., & Mansoori, Z. (2020). Effects of applying uniform and non-uniform eXternal magnetic fields on the optimal design of microchannel heat sinks. Int. J. Mech. Sci., 186, 105886.‏
  • Abadeh, A., Sardarabadi, M., Abedi, M., PourrameZan, M., Passandideh-Fard, M., & Maghrebi, M. J. (2020). EXperimental characteriZation of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. J. Molecular Liq., 299, 112206.‏
  • Li, P., Guo, D., & Huang, X. (2020). Heat transfer enhancement in microchannel heat sinks with dual split-cylinder and its intelligent algorithm based fast optimiZation. Applied Thermal Engineering, 171, 115060.‏
  • Nouri, R., Gorji-Bandpy, M., & Domiri Ganji, D. (2014). Numerical investigation of magnetic field effect on forced convection heat transfer of nanofluid in a sinusoidal channel. Modares Mechanical Engineering, 13(14), 43-55.‏
  • Kargar Sharifabad, H., & Falsafi, M. (2015). Numerical modeling of internal convection heat transfer of magnetic fluid in the pulse magnetic field and different time frequencies. Modares Mechanical Engineering, 15(6), 91-98.‏
  • Chen, Z., Qian, P., Huang, Z., Zhang, W., & Liu, M. (2023). Study on flow and heat transfer of liquid metal in the microchannel heat sink. Int. J. Thermal Sci., 183, 107840.‏
  • Koneti, L., & Venkatasubbaiah, K. (2023). A comparative heat transfer study of water and liquid gallium in a square enclosure under natural convection. Int. J. Fluid Mech. Research, 50(3).‏
  • SheikhZadeh, G., Alanchari, A., Mehradasl, A., & Pirmohammadi, M. (2023). Numerical study of turbulent natural convection in the presence of a constant magnetic field in a square enclosure. Energy Engineering and Management, 1(2), 49-55.‏
  • Wang, Z. H., & Lei, T. Y. (2020). Liquid metal MHD effect and heat transfer research in a rectangular duct with micro-channels under a magnetic field. Int. J. Therm. Sci., 155, 106411.‏
  • Singh, R. J., & Gohil, T. B. (2023, May). Numerical investigation on the liquid metal flow and heat transfer in the multi-step enclosure in the eXistence of magnetic field. In AIP Conference Proceedings (Vol. 2584, No. 1). AIP Publishing.
  • Ullah, Z., Ahmad, H., Khan, A. A., Aldhabani, M. S., & Alsulami, S. H. (2023). Thermal conductivity effects on miXed convection flow of electrically conducting fluid along vertical magnetiZed plate embedded in porous medium with convective boundary condition. Materials Today Communications, 35, 105892.
  • Nemati, M., Farahani, S. D., & Armaghani, T. (2023). A LBM entropy calculation caused by hybrid nanofluid miXed convection under the effect of changing the kind of magnetic field and other active/passive methods.  J. Magnet. Magnetic Mater., 566, 170277.
  • Ishak, A., NaZar, R., Bachok, N., & Pop, I. (2010). MHD miXed convection flow near the stagnation-point on a vertical permeable surface. Physica A: Statistical Mechanics and its Applications, 389(1), 40-46.
  • Sarowar, M. T. (2021) Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Ceramics International, 47(1), 214-225

  Hunt, J. C. R. (1965). Magnetohydrodynamic    flow in rectangular ducts. J. fluid mech., 21(4), 577-590.‏

 

  • Hunt, J. C. R., & Stewartson, K. (1965). Magnetohydrodynamic flow in rectangular ducts. II. J. fluid mech., 23(3), 563-581.‏