[1] Yılmaz, İ. H., & Mwesigye, A. J. A. e. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. 225, 135-174..
[2] Arai, N., Itaya, Y., & Hasatani, M. J. S. E. (1984). Development of a “volume heat-trap” type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation. 32(1), 49-56.
[3] Peng, W., Sadaghiani, O. K. J. T. S., & Progress, E. (2020). Using a sunrays trap in direct-absorption solar collector (DASC) to enhance the thermal efficiency of collector. 20, 100740.
[4] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[5] Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector.
[6] Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., Taylor, R. A. J. J. o. r., & energy, s. (2010). Nanofluid-based direct absorption solar collector. 2(3).
[7] Polvongsri, S., & Kiatsiriroat, T. J. H. t. e. (2014). Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. 35(13), 1183-1191.
[8] Otanicar, T. P., Phelan, P. E., & Golden, J. S. J. S. E. (2009). Optical properties of liquids for direct absorption solar thermal energy systems. 83(7), 969-977..
[9] Yousefi, T., Veisy, F., Shojaeizadeh, E., Zinadini, S. J. E. t., & science, f. (2012). An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. 39, 207-212.
[10] Kasaeian, A., Daneshazarian, R., Rezaei, R., Pourfayaz, F., & Kasaeian, G. J. J. o. C. P. (2017). Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. 158, 276-284.
[11] Menbari, A., & Alemrajabi, A. A. J. O. M. (2016). Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3–CuO binary nanofluids) for direct absorption solar thermal energy. 52, 116-125.
[12] Menbari, A., Alemrajabi, A. A., Rezaei, A. J. E. T., & Science, F. (2017). Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. 80, 218-227.
[13] Karami, M., Akhavan-Bahabadi, M., Delfani, S., Raisee, M. J. R., & Reviews, S. E. (2015). Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. 52, 793-801.
[14] Vakili, M., Hosseinalipour, S., Delfani, S., Khosrojerdi, S., & Karami, M. J. S. E. (2016). Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. 131, 119-130.
[20] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[15]. Jeter, S. M. J. S. E. (1986). Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. 37(5), 335-345.
[16] Forristall, R. (2003). Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. Retrieved from
[17] Kalogirou, S. A. J. E. (2012). A detailed thermal model of a parabolic trough collector receiver. 48(1), 298-306.
[18] Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., Taylor, R. A. J. J. o. r., & energy, s. (2010). Nanofluid-based direct absorption solar collector. 2(3).
[20] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[19] O’Keeffe, G., Mitchell, S., Myers, T., Cregan, V. J. I. J. o. H., & Transfer, M. (2018). Modelling the efficiency of a low-profile nanofluid-based direct absorption parabolic trough solar collector. 126, 613-624.
[20] Joseph, A., Sreekumar, S., & Thomas, S. J. R. E. (2020). Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector. 162, 1655-1664.
[21] Bortolato, M., Dugaria, S., Agresti, F., Barison, S., Fedele, L., Sani, E., . . . management. (2017). Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. 150, 693-703.
[22] Xu, G., Chen, W., Deng, S., Zhang, X., & Zhao, S. J. N. (2015). Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. 5(4), 2131-2147.
[23] Forristall, R. (2003). Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. Retrieved from
[24] Dudley, V. E., Kolb, G. J., Mahoney, A. R., Mancini, T. R., Matthews, C. W., Sloan, M., & Kearney, D. (1994). Test results: SEGS LS-2 solar collector. Retrieved from