شبیه‌سازی عملکرد یک موتور اشتعال تراکمی با واکنش پذیری کنترل شده (RCCI) با سوخت بیودیزل روغن پسماند پخت و پز (WCO) با تمرکز بر روند مصرف گونه‌های تشکیل دهنده‌ی سوخت

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مکانیک، دانشگاه صنعتی نوشیروانی بابل

2 استاد، دانشکده مکانیک، دانشگاه صنعتی نوشیروانی بابل

3 دانشیار، دانشکده مکانیک، دانشگاه صنعتی نوشیروانی بابل

4 پژوهشگر فوق دکتری، آزمایشگاه کوریا. / INSA Rouen Normandie

چکیده

به‌کارگیری استراتژی موتورهای کم‌دماسوز یکی از راهکارهای موثر برای کاهش اکسیدهای نیتروژن می‌باشد؛ در مطالعه‌ی حاضر یک کد تک‌ناحیه‌ای با درنظر گرفتن مکانیزم سینتیک مفصل شیمیایی، جهت بررسی عملکرد یک موتور RCCI با سوخت ترکیبی دیزل/بیودیزل WCO - بنزین توسعه داده شد. ابتدا نتایج عددی به‌کمک نتایج تجربی اعتبارسنجی و سپس پارامترهای عملکردی و نرخ تولید و مصرف گونه‌ها در بارهای مختلف بررسی شد. بررسی مصرف گونه‌های شیمیایی نشان داد، اسیدهای چرب غیر اشباع در فرآیند احتراق با سرعت بیشتری مصرف می‌شوند. سرعت مصرف دیزل نیز نسبت به WCO در تمامی بارها کمتر است. با توجه به نتایج، با افزایش بار از 20 تا 80 درصد، لحظه‌ی شروع احتراق گرم، در حدود 5/2 درجه به لحظه‌ی شروع پاشش سوخت نزدیک‌تر می‌شود. همچنین با افزایش جرم سوخت، به دلیل سهم بالای سوخت LR بازه‌ی شکل‌گیری احتراق سرد کوتاه‌تر می‌شود. در تمامی حالت‌ها شروع تولید گونه‌ی فرمالدهید هم‌زمان با آغاز آزادسازی حرارت دماپایین و شروع تولید گونه‌ی هیدروکسیل هم‌زمان با آغاز فرآیند آزادسازی حرارت دما بالا است. نسبت مولی فرمالدهید تولید شده به هیدروکسیل با افزایش بار موتور، به دلیل کاهش نسبت سوخت DI به FPI کاهش یافته، منجربه کاهش بازه‌ی احتراق سرد می‌شود.

کلیدواژه‌ها

موضوعات


[1]  TaleshAmiri, S., Shafaghat, R., Mohebbi, M., Mahdipour, M. A., & Esmaeili, M. (2021). Power Enhancement of a Heavy-Duty Rail Diesel Engine Considering the Exhaust Gas and ancillary facilities Temperature Limitation: A Feasibility Study. Int. J. Maritime Tech., 15, 107-118.
[2]  Chidambaram, A. R., & Krishnasamy, A. (2022). Investigations on Dual Fuel Reactivity Controlled Compression Ignition Engine using Alternative Fuels Produced from Waste Resources (No. 2022-01-1095). SAE Technical Paper..
[3]  Elkelawy, M., Etaiw, S. E. D. H., Ayad, M. I., Marie, H., Dawood, M., Panchal, H., & Bastawissi, H. A. E. (2021). An enhancement in the diesel engine performance, combustion, and emission attributes fueled by diesel-biodiesel and 3D silver thiocyanate nanoparticles additive fuel blends. J. the Taiwan Instit. Chem. Eng., 124, 369-380..
[4]  Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., ... & Andrade, J. B. D. (2005). Biodiesel: an overview. J. Brazilian Chem. Society, 16, 1313-1330..
[5]  Lee, I., Johnson, L. A., & Hammond, E. G. (1995). Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. the American Oil Chem. Soc., 72, 1155-1160.
[6]  Gaur, A., Dwivedi, G., Baredar, P., & Jain, S. (2022). Influence of blending additives in biodiesel on physiochemical properties, engine performance, and emission characteristics. Fuel, 321, 124072.
[7]  Elkelawy, M., El Shenawy, E. A., Bastawissi, H. A. E., Shams, M. M., & Panchal, H. (2022). A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Conversion and Management: X, 14, 100177..
[8]  Ojapah, M. M., & Diemuodeke, E. O. (2023). Effect of palm oil biodiesel blends on engine emission and performance characteristics in an internal combustion engine. Open J. Energ. Effic., 1(1), 13-24..
[9]  Öztürk, E. and Ö. Can, Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend. Energy, 2022. 244: p. 123129.
[10] Shelke, P.S., N.M. Sakhare, and S. Lahane, Investigation of combustion characteristics of a cottonseed biodiesel fuelled diesel engine. Procedia Technology, 2016. 25: p. 1049-1055.
[11] El-Seesy, A.I., H. Hassan, and S. Ookawara, Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine. Energy, 2018. 147: p. 1129-1152.
[12] Özbay, N., N. Oktar, and N.A. Tapan, Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 2008. 87(10-11): p. 1789-1798.
[13] Hribernik, A. and B. Kegl, Performance and exhaust emissions of an indirect-injection (IDI) diesel engine when using waste cooking oil as fuel. Energy & fuels, 2009. 23(3): p. 1754-1758.
[14] Plamondon, E. and P. Seers, Parametric study of pilot–main injection strategies on the performance of a light-duty diesel engine fueled with diesel or a WCO biodiesel–diesel blend. Fuel, 2019. 236: p. 1273-1281.
[15] Venugopal, I.P., D. Balasubramanian, and A. Rajarajan, Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx trade-off. J. of Cleaner Production, 2021. 327: p. 129495.
[16] Kassem, Y. and H. Çamur, A laboratory study of the effects of wide range temperature on the properties of biodiesel produced from various waste vegetable oils. Waste and biomass valorization, 2017. 8(6): p. 1995-2007.
[17] Bahari, R., Shafaghat, R., Jahanian, O., & Ghaedi, A. (2022). The influence of biodiesel with high saturated fatty acids on the performance of a CI engine fuelled by diesel and biodiesel blend fuels at low loads. Int. J. Amb. Energ., 43(1), 7643-7656..
[18] Tayari, S., R. Abedi, and A. Rahi, Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy, 2020. 147: p. 1058-1069.
[19] Adhikesavan, C., D. Ganesh, and V.C. Augustin, Effect of quality of waste cooking oil on the properties of biodiesel, engine performance and emissions. Cleaner Chemical Engineering, 2022. 4: p. 100070.
[20] Jafarihaghighi, F., Bahrami, H., Ardjmand, M., & Mirzajanzadeh, M. (2021). Combustion, performance, emission and fatty acid profiles analysis of third generation biodiesels obtained from a recycle and fresh feedstock: a comparative assessment. Int. J. Sust. Eng., 14(6), 2114-2125.
[21] Pinzi, S., Rounce, P., Herreros, J. M., Tsolakis, A., & Dorado, M. P. (2013). The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 104, 170-182.
[22] Puhan, S., Saravanan, N., Nagarajan, G., & Vedaraman, N. (2010). Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass and Bioenergy, 34(8), 1079-1088.
[23] Maiboom, A., X. Tauzia, and J.-F. Hétet, (2008) Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy,. 33(1): p. 22-34.
[24] Gad, M., et al., (2020) Enhancing the combustion and emission parameters of a diesel engine fueled by waste cooking oil biodiesel and gasoline additives. Fuel, 269: p. 117466.
[25] Shafaghat, R., S. Talesh Amiri, and O. Jahanian, (2020) Numerical Study of the Effect of Adding Water with Different Temperatures to Low-Reactivity Fuel in a Reactivity Controlled Compression Ignition (RCCI) Engine. Fuel and Combustion, 13(4): p. 43-62.
[26] Palash, S. M., Kalam, M. A., Masjuki, H. H., Masum, B. M., Fattah, I. R., & Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23, 473-490..
[27] T Talesh Amiri, S., Shafaghat, R., Jahanian, O., & Fakhari, A. H. (2021). Numerical investigation of reactivity controlled compression ignition engine performance under fuel aggregation collision to piston bowl rim edge situation. Iranian (Iranica) J. Energy & Environment, 12(1), 10-17.
[28] Fakhari, A. H., Shafaghat, R., Jahanian, O., Ezoji, H., & Motallebi Hasankola, S. S. (2020). Numerical simulation of natural gas/diesel dual-fuel engine for investigation of performance and emission. J. Therm. Analy. Calorim., 139, 2455-2464.
[29] Kumar, M.S., K. Arul, and N. Sasikumar, (2019) Impact of oxygen enrichment on the engine's performance, emission and combustion behavior of a biofuel based reactivity controlled compression ignition engine. J. Energ. Instit., 92(1): p. 51-61.
[30] Gautam, P.S., P.K. Vishnoi, and V. Gupta, (2022) A single zone thermodynamic simulation model for predicting the combustion and performance characteristics of a CI engine and its validation using statistical analysis. Fuel, 315: p. 123285.
[31] Li, J., W. Yang, and D. Zhou, (2017) Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews, 69: p. 65-79.
[32] Vickers, N.J., (2017) Animal communication: when i’m calling you, will you answer too? Current biology, 27(14): p. R713-R715.
[33] Bartok, W. and A.F. Sarofim, (1991) Fossil fuel combustion: a source book.
[34] Jahanian, O. and S. Jazayeri, (2012) A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI engine. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67(3): p. 503-515.
[35] Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., & Faravelli, T. (2014). Reduced kinetic schemes of complex reaction systems: fossil and biomass‐derived transportation fuels. Int. J. Chem. Kinetics, 46(9), 512-542.
[36] Catapano, A. L., Reiner, Ž., De Backer, G., Graham, I., Taskinen, M. R., Wiklund, O., ... & Wood, D. (2011). ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis, 217(1), 3-46..