- Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron dev. lett., 2(5), 126-129.
- Qu, W., & Mudawar, I. (2002). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf., 45(12), 2549-2565. J. Heat Mass Transf.
- Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int. Commun. Heat Mass Transf. , 37(8), 1078-1086.
- Guo, Y., Zhu, C. Y., Gong, L., & Zhang, Z. B. (2023). Numerical simulation of flow boiling heat transfer in microchannel with surface roughness. Int. J. Heat Mass Transf., 204, 123830.
- Sepehrnia, M., & Rahmati, A. (2018). Numerical investigating the gas slip flow in the microchannel heat sink using different materials. Nano Micro Scale Sci., 6(Special Issue), 44-50.
- Kumar, R., Singh, G., & MikielewicZ, D. (2018). A new approach for the mitigating of flow maldistribution in parallel microchannel heat sink. J. Heat Transf. , 140(7), 072401.
- Li, X. Y., Wang, S. L., Wang, X. D., & Wang, T. H. (2019). Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks. Int. J. Therm. Sci., 137, 616-626.
- Shomali, M., & Rahmati, A. (2020). Numerical analysis of gas flows in a microchannel using the Cascaded Lattice BoltZmann Method with varying Bosanquet parameter. J. Heat Mass Transf. Res., 7(1), 25-38.
- Wang, S. L., Chen, L. Y., Zhang, B. X., Yang, Y. R., & Wang, X. D. (2020). A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs. J. Therm. Anal. Calorim., 141, 547-558.
- Hamidi, E., Ganesan, P., Muniandy, S. V., & Hassan, M. A. (2022). Lattice BoltZmann Method simulation of flow and forced convective heat transfer on 3D micro X-ray tomography of metal foam heat sink. Int. J. Therm. Sci., 172, 107240.
- KeshavarZ, M., Habibi, S., & Amini, Y. (2023). Heat transfer enhancement in a microchannel using active vibrating pieZoelectric vorteX generator. J. Solid Fluid Mech., 12(6), 191-204.
- Chein, R., & Huang, G. (2005). Analysis of microchannel heat sink performance using nanofluids. Therm. Eng., 25(17-18), 3104-3114.
- DarZi, A. R., Farhadi, M., Sedighi, K., Aallahyari, S., & Delavar, M. A. (2013). Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: numerical study. Int. Commun. Heat Mass Transf., 41, 68-75.
- Sohel, M. R., KhaleduZZaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M., & Mahbubul, I. M. (2014). An Experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int. J. Heat Mass Transf., 74, 164-172.
- Ho, C. J., Wei, L. C., & Li, Z. W. (2010). An Experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl. Therm. Eng., 30(2-3), 96-103.
- Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink. Mol. Liq., 230, 550-556.
- Teimouri, A., Nejati, V., Zahmatkesh, I., & Saleh, S. R. (2023). Numerical investigation of two-phase nanofluid flow in square cavity with inclined wall under different magnetic field. J. Solid Fluid Mech., 13(1), 125-136.
- Kumar, R., Tiwary, B., & Singh, P. K. (2022). Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Therm. Eng., 201, 117787.
- Miner, A., & Ghoshal, U. (2004). Cooling of high-power-density microdevices using liquid metal coolants. Phys. Lett., 85(3), 506-508.
- Hodes, M., Zhang, R., Lam, L. S., WilcoXon, R., & Lower, N. (2013). On the potential of galinstan-based minichannel and minigap cooling. IEEE Trans. Compon. Packag. Manuf. Technol., 4(1), 46-56.
- Xie, G., Chen, Z., Sunden, B., & Zhang, W. (2013). Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks. Heat Transf., Part A: Applications, 63(3), 201-225.
- Zhang, R., Hodes, M., Lower, N., & WilcoXon, R. (2015). Water-Based Microchannel and Galinstan-Based Minichannel Cooling Beyond 1 kW/cm2 Heat FluX. , IEEE Trans. Compon., Packag. Manuf. Technol., 5(6), 762-770.
- Wu, T., Wang, L., Tang, Y., Yin, C., & Li, X. (2022). Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions. Micromachines, 13(1), 95.
- Wang, Z. H., & Zhou, Z. K. (2019). External natural convection heat transfer of liquid metal under the influence of the magnetic field. Int. J. Heat Mass Transf., 134, 175-184.
- Shi, X., Li, S., Mu, Y., & Yin, B. (2019). Geometry parameters optimiZation for a microchannel heat sink with secondary flow channel. Int. Commun. Heat Mass Transf., 104, 89-100.
- Wang, T. H., Wu, H. C., Meng, J. H., & Yan, W. M. (2020). Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. Int. J. Heat Mass Transf., 149, 119217.
- Hajmohammadi, M. R., GholamreZaie, S., Ahmadpour, A., & Mansoori, Z. (2020). Effects of applying uniform and non-uniform eXternal magnetic fields on the optimal design of microchannel heat sinks., J. Mech. Sci., 186, 105886.
- Abadeh, A., Sardarabadi, M., Abedi, M., PourrameZan, M., Passandideh-Fard, M., & Maghrebi, M. J. (2020). EXperimental characteriZation of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. Mol. Liq., 299, 112206.
- Li, P., Guo, D., & Huang, X. (2020). Heat transfer enhancement in microchannel heat sinks with dual split-cylinder and its intelligent algorithm based fast optimiZation. Therm. Eng., 171, 115060.
Chen, Z., Qian, P., Huang, Z., Zhang, W., & Liu, M. (2023). Study on flow and heat transfer of liquid metal in the microchannel heat sink. Int. J. Therm. Sci., 183, 107840.
- Koneti, L., & Venkatasubbaiah, K. (2023). A comparative heat transfer study of water and liquid gallium in a square enclosure under natural convection. Int. J. Fluid Mech. Res., 50(3).
- SheikhZadeh, G., Alanchari, A., Mehradasl, A., & Pirmohammadi, M. (2023). Numerical study of turbulent natural convection in the presence of a constant magnetic field in a square enclosure. Energy Eng. Manag. 1(2), 49-55.
- Singh, R. J., & Gohil, T. B. (2023, May). Numerical investigation on the liquid metal flow and heat transfer in the multi-step enclosure in the eXistence of magnetic field. In AIP Conference Proceedings(Vol. 2584, No. 1). AIP Publishing.
- Ullah, Z., Ahmad, H., Khan, A. A., Aldhabani, M. S., & Alsulami, S. H. (2023). Thermal conductivity effects on miXed convection flow of electrically conducting fluid along vertical magnetiZed plate embedded in porous medium with convective boundary condition. Today Commun., 35, 105892.
- Wang, Z. H., & Lei, T. Y. (2020). Liquid metal MHD effect and heat transfer research in a rectangular duct with micro-channels under a magnetic field. Int. J. Therm. Sci., 155, 106411.
- Sarowar, M. T. (2021) Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Int., 47(1), 214-225
- Hunt, J. C. R. (1965). Magnetohydrodynamic flow in rectangular ducts. Fluid Mech., 21(4), 577-590.
- Hunt, J. C. R., & Stewartson, K. (1965). Magnetohydrodynamic flow in rectangular ducts. II. Fluid Mech., 23(3), 563-581.