[1] Biddiss E, Chau T (2006) Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Med. Eng. Phys. 28: 568–578.
[2] Shahinpoor M (1995) Micro-electro-mechanics of ionic polymeric gels as electrically controllable artificial muscles. J. Intell. Mater. Syst. Struct. 6(3): 307–314.
[3] Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J. Chem. Phys. 93(6): 62–72.
[4] Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. Second edn. SPIE Press, Washington.
[5] Jung W, Kang SS, Toi Y (2010) Computational modeling of electrochemical-mechanical behaviors of Flemion-based actuators considering the effects of electro-osmosis and electrolysis. Comput. Struct. 88(15–16): 38–48.
[6] Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7): 21–31.
[7] Nemat-Nasser S, Wu Y (2003) Comparative experimental study of ionic polymer metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93(9): 55–67.
[8] Nemat-Nasser S, Zamani S, Tor Y (2006) Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99(10): 1–17.
[9] Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92(5): 2899–2915.
[10] Liu H, Han S, Li Y, Zhang M, Zhu J (2023) Deflection analysis of IPMC actuators under AC voltages using DIC method. Proc. SPIE. 12550.
[11] UI Haq M, Gang Z, Muhammad, Waqas H, Ur Rehman A, S.M A (2015) Deflection analysis of IPMC actuated fin of a fish like micro device. J. Biomimetics, Biomater. Biomed. Eng. 24: 97-104.
[12] Farid M, Gang Z, Linh Khuong T, Zhi Sun Z, Rizwan M (2014) Deflection analysis of Ionic Polymer Metal Composites (IPMC) actuators for bionic joints. Appl. Mech. Mater. 627: 251-253.
[13] Farid M, Gang Z, Linh Khuong T, Ur Rehman N, Adnan S (2015) Deflection simulation of Ionic Polymer Metal Composites (IPMC) actuators for bionic knee joints. Adv. Mater. Res. 1101: 459-462.
[14] SamPour S, Moeinkhah H, Rahmani H (2019) Electrochemical viscoelastic modelling to predict quasi-static and dynamic response of IPMC actuators. Mech. Mater. 138: 103172.
[15] Traver JE, Nuevo-Gallardo C, Rodríguez P, Tejado I, Vinagre BM (2022) Modeling and control of IPMC-based artificial eukaryotic flagellum swimming robot: Distributed actuation. Algorithms. 15(6): 181.
[16] Rao M, Tang F, Li Y, Chang LF, Zhu Z, Aabloo A (2022) Multi-physical modeling and fabrication of high-performance IPMC actuators with serrated interface. Smart Mater. Struct. 31(9): 095023.
[17] Gupta A, Mukherjee S (2021) Dynamic modeling of biomimetic undulatory ribbon fin underwater propulsor actuated by IPMC. Mater. Today: Proc. 44(1): 1086-1089.
[18] De Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. EPL 50(4): 513–518.
[19] Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli: Part II. Response kinetics. J. Electroanal. Chem. 480(1–2): 186–198.
[20] Kim KJ, Tadokoro S (2007) Electroactive polymers for robotics applications: artificial muscles and sensors. First edn. Springer, London.
[21] Gong Y, Tang C, Tsui C, Fan J (2009) Modelling of ionic polymer-metal composites by a multi-field finite element method. Int. J. Mech. Sci. 51(11–12): 741–751.
[22] Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In: IEEE International conference on robotics and automation.
[23] Feng GH (2010) Numerical study on dynamic characteristics of micromachined ionic polymer metal composite devices based on molecular-scale modeling. Comput. Mater. Sci. 50(1): 158–166.
[24] Zhang L, Yang Y (2007) Modeling of an ionic polymer-metal composite beam on human tissue. SMS 16(2): 197–207.
[25] Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams. Comput. Struct. 83(31–32): 73–83.