بررسی اثر نسبت منظری روی تمرکز نانو ذرات زیستی با استفاده از خواص ویسکوالاستیک جریان

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک، دانشگاه یزد، دپارتمان مهندسی مکانیک

2 دانشیار، دانشگاه یزد، دپارتمان مهندسی مکانیک

3 دانشجوی پسا دکتری، دانشگاه کلگری کانادا، دپارتمان مهندسی مکانیک

چکیده

جداسازی و تمرکز نانوذرات زیستی در تشخیص، درمان و مراقبت‌ در حوزه‌ی پزشکی بسیار پرکاربرد است. نانوذرات زیستی مانند انواع ویروس، DNA، پروتئین و اگزوسوم حاوی اطلاعات قابل توجهی هستند که می‌توانند به تشخیص و درمان بیماری‌هایی مانند سرطان کمک کنند. در این مقاله سیال ویسکوالاستیک مدل اولدرویدبی، با روش المان محدود در نرم افزار کامسول 6 شبیه‌سازی شده است. نیروی لیفت اینرسی نیز از روش شبیه‌سازی مستقیم عددی در متلب و کوپلینگ با نرم‌افزار کامسول 6 محاسبه شده است. با توجه به هندسه‌های پرکاربرد چهارگوش در میکروکانال‌ها، برای اولین بار اثر پارامتر مهم نسبت منظری در تمرکز نانوذرات زیستی 100 تا 1000 نانومتری در سیال ویسکوالاستیک رقیق با غلظت پلیمر PEO 1/0% و عدد رینولدز 8 به شکل سه بعدی مطالعه شده است. با بررسی نتایج مشاهده شده که در نسبت‌های منظری بزرگتر از 1، تمرکز یگانه برای انواع ذرات دیده نشده اما در کانال مربع با نسبت منظری 1 تمرکز یگانه بخوبی برای ذرات 500 تا 1000 در سیال رقیق ویسکوالاستیک رخ داده است.

کلیدواژه‌ها

موضوعات


  • Dong L, Zieren, R C, Wang Y, de Reijke, T M, Xue, W, Pienta, K J (2019) Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 1871(2): 342-360.
  • Gonzalez-Begne, M (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J.Proteome.Res 8 (3): 1304-1314.
  • C Admyre, S M Johansson, K R Qazi, J J Filén, R Lahesmaa, M Norman, E P Neve, A Scheynius, S Gabrielsson (2007) Exosomes with immune modulatory features are present in human breast milk, J. Immunol 179(3): 1969-1978.
  • Skriner, K (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheumatol 54(12): 3809-3814.
  • Gonzales, P A (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. JASN 20(2): 363-379.
  • Liu, S J, S H Hwang, H H Wei (2008) Nonuniform Electro-osmotic Flow on Charged Strips and Its Use in Particle Trapping. Langmuir 24(1): 13776-13789.
  • Salafi, T, Zeming, K K, Zhang, Y (2017) Advancements in microfluidics for nanoparticle separation. Lab. Chip 17(1): 11-33.
  • Sajeesh, P, Sen, A K (2014) Particle separation and sorting in microfluidic devices: Microfluid Nanofluidic 17.

]9 [نوروزشمسیان ع، محسنی آ، مجدم م (1399) طراحی میکروجداساز سلولهای سرطانی همراه جریان خون با استفاده از ترکیب روش‌های جداسازی پینچ و دی الکتروفورسیس. مجله علمی پژوهشی سازه­ها و شا­ره­ها 296-281 (1)10.

]10 [اربابی س، مافی م، سلطانی م (1397) مدل­سازی دو بعدی جداسازی ذرات زیستی با استفاده از اینری در میکروکانال. مجله علمی پژوهشی مکانیک مدرس 246-239 (1) 18

  • Huang, LR (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673): 987-990.
  • Bhagat, A A S, S S Kuntaegowdanahalli, I Papautsky (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid.Nanofluidics 7(2): 217-226.
  • Lee, D J, Brenner, H, Youn, J R Song, Y S (2013) Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep 3(1: 1-8.
  • Stickel, J J, Powell, R L (2005) Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech 37:129-149.
  • Hemminger, O L, Boukany, P E, Wang, S Q, Lee, L J (2010) Flow pattern and molecular visualization of DNA solutions through a 4: 1 planar micro-contraction. J. Nonnewton. Fluid. Mech 165(23-24):1613-1624.
  • Gauthier, F, Goldsmith, H L, Mason, S G (1971) Particle motions in non-Newtonian media. Rheol. Acta 10(3): 344-364.
  • Tehrani, M A (1996) An experimental study of particle migration in pipe flow of viscoelastic fluids. J.Rheol 40(6): 1057-1077.
  • Leshansky, A M, Bransky, A, Korin, N, Dinnar, U (2007) Tunable nonlinear viscoelastic “focusing” in a microfluidic device. Phys. Rev. lett 98(23): 234501.
  • D'Avino, G, (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab. Chip12(9) -1638-1645.
  • Romeo, G (2013) Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab. Chip13(14): -2802-2807.
  • Seo, KW (2014) Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC. Adv. 4(7): 3512-3520.
  • Kang, K (2013) DNA-based highly tunable particle focuser. Nature communications 4:2567.
  • Liu, C (2015) Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Anal. Chem 87(12):6041-6048.
  • Yang, S H (2017) Multiple-line particle focusing under viscoelastic flow in a microfluidic device. Anal. chem 89(6): 3639-3647.
  • Lee, D J (2013) Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep 3:3258.
  • Yuan D, Zhang J, Yan S, Pan, C Alici, G Nguyen, N T, Li, W H (2015) Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion–contraction cavity arrays. Biomicrofluidics, 9(4).
  • Kim B, JM Kim (2016) Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel. Biomicrofluidics 10(2): 24111.
  • Seo, K W, Y J Kang, S J Lee (2014) Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys. Fluids 26(6): 063301.
  • Song, H Y (2016) Relationship between particle focusing and dimensionless numbers in elasto-inertial focusing. Rheo. Acta 55(11-12):889-900.
  • Xiang, N, Q Dai, Z Ni (2016) Multi-train elasto-inertial particle focusing in straight microfluidic channels. Appl. Phys. Lett 109(13): 134101.
  • Mohammadi, M Zargartalebi, H Salahandish, R Aburashed, R Yong, K W, Sanati-Nezhad A (2021) Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis. Biosens. Bioelectron 183: 113176.
  • Boger, D V (1984) Dilute polymer solutions and their use to model polymer processing flows. Interrelations between Processing Structure and Properties of Polymer Materials, Eds. Jc. Seferis. PS Theocaris, Elsevier Science Publishers, Ansterdam 307.
  • James, D F (2009) Boger fluids. Annu. Rev. Fluid Mech 41: 129-142.
  • Phan-Thien N, Mai-Duy N. (2013) Understanding viscoelasticity: an introduction to rheology Berlin: Springer:34-37.
  • Liu C (2017) Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS nano11(7): 6968-6976.
  • Liu C, Xue C, Sun J, Hu G (2016) A generalized formula for inertial lift on a sphere in microchannels. Lab Chip 16(5):884-92
  • Karampelas, I H, Gómez-Pastora, J (2022) Novel approaches concerning the numerical modeling of particle and cell separation in microchannels: a review. Processes10(6): 1226.
  • Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503
  • Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab. Chip 14(15):2739-2761.
  • Yaghoobi M, Saidi MS, Ghadami S, Kashaninejad N (2020) An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator. Sensors, 20(13):3774.
  • Kim JY, Ahn SW, Lee SS, Kim JM (2012) Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab Chip, 12(16):2807-14

 

  • Wang S (2012) Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int J Nanomedicine 7:5019.
  • Ni C, Jiang D (2020) Three-dimensional numerical simulation of particle focusing and separation in viscoelastic fluids. Micromachines 11(10):908.
  • Tian F, Feng Q, Chen Q, Liu C, Li T, Sun J (2019) Manipulation of bio-micro/nanoparticles in non-Newtonian microflows. Microfluid. Nanofluidics 23:1-9.
  • Del Giudice F, Romeo G, D'Avino G, Greco F, Netti PA, Maffettone PL (2013) Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab.Chip 13(21):4263-71.