[1] W. Wang et al. (2020) A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl-Ishlinskii model. Sen. Act., A Phys. 316: 112431
[2] Q. Xu and Y. Li (2008) Structure Improvement of an XY Flexure Micromanipulator for Micro/Nano Scale Manipulation. IFAC 41(2): 12733-12738.
[3] Y. Li and Q. Xu (2009) Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot 25(3): 645–657.
[4] B. Ding and Y. Li (2014) Design and analysis of a decoupled XY micro compliant parallel manipulator. IEEE Int. Conf. Robot. Bio, IEEE ROBIO 2014: 1898–1903.
[5] A. AbuZaiter, O. F. Hikmat, M. Nafea, and M. S. M. Ali (2016) Design and fabrication of a novel XYθZ monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators. Smart Mat. Struct. 25(10): 105004.
[6] M. Sasaki, W. Kamada, and K. Hane (1999) Two-dimensional control of shape-memory-alloy actuators for aligning a si micromachined pinhole of spatial filter. Jap. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 38(12): 7190–7193.
[7] Y. M. Han, C. J. Park, and S. B. Choi (2003) End-point position control of a single-link arm using shape memory alloy actuators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217(8): 871–882.
[8] E. Asua, A. García-Arribas, and V. Etxebarria (2008) Micropositioning using shape memory alloy actuators. Eur. Phys. J. Spec. Top. 158(1): 231–236.
[9] H. Ashrafiuon and V. R. Jala (2009) Sliding mode control of mechanical systems actuated by shape memory alloy. J. Dyn. Syst. Meas. Cont. Trans. ASME 131(1): 1–6.
[10] M. Al Janaideh, S. Rakheja, and C. Y. Su (2011) An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mech. 16(4): 734–744.
[11] S. Park and D. Hwang (2020) An experimental study on precision positioning characteristics of shape memory alloy actuator. Microsyst. Tech. 26(9): 2801–2807.
[12] شکی س، ذاکرزاده م (1395) مدلسازی و کنترل عملگر آلیاژ حافظهدار با روش مد لغزشی فازی. م م مدرس. ۱۶ (۷) :۳۵۳-۳۶۰.
[13] سلطانی گردفرامرزی م, بزرگ س م, ذاکرزاده م. (1394) تخمین مقاوم ضریب سختی فنر در عملگر آلیاژ حافظهدار توسط فیلتر کالمن توسعه یافته. م سازهها و شارهها5(4): 69-81.
[14] رضویلر ر، فتحی ع، دردل م، ارغوانی هادی ج (1396) تحلیل دینامیکی رفتار شبه الاستیک یک تیر از جنس آلیاژ حافظ شکل. م م مدرس ۱۷ (۱۲) :۲۳۳-۲۲۳.
[15] چهاردولی ح، شفیعی ا، اقتصاد م (1401) کنترل فازی-PID مکانیزم هایی با عملگرهای متضاد از جنس آلیاژ حافظه دار. ف م هوافضا 18(2): 19-7.
[16] S. Saito, S. Oka, and R. Onodera (2022) Modelling of a shape memory alloy actuator for feedforward hysteresis compensator considering load fluctuation, CAAI Trans. Intell. Tech., vol. 7, no. 4, pp. 549–560
[17] M. R. Zakerzadeh and H. Sayyaadi (2013) Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system. Mech. 23(8): 1150–1162.
[18] L. Liu, K. K. Tan, C. S. Teo, S. L. Chen, and T. H. Lee (2013) Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE Trans. Cont Sys. Tech. 21(5): 1834–1845.
[19] P. Krejci and K. Kuhnen (2001) Inverse control of systems with hysteresis and creep. IEE Proc. Cont. Theory Appl. 148(3): 185–192.
[20] A. Pai, M. Riepold, and A. Trächtler (2018) Model-based precision position and force control of SMA actuators with a clamping application. Mechat, 50: 303–320.
[21] K. Kuhnen (2003) Modeling, identification and compensation of complex hysteretic nonlinearities: A modified prandtl-ishlinskii approach. Eur. J. Cont. 9(4): 407–418.
[22] M. Al Janaideh, J. Mao, S. Rakheja, W. Xie, and C. Y. Su (2008) Generalized Prandtl-Ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators. Proc. IEEE Conf. Decis. Cont. 5182–5187.
[23] M. Al Janaideh (2009) Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for Compensation of Hysteresis in Smart Actuators. Concordia University, Montral.