[1] Ando T (2017) High-speed atomic force microscopy and its future prospects. Biophys Rev 10(2): 285–292.
[2] Chen J, Xu K (2020) Applications of atomic force microscopy in materials, semiconductors, polymers, and medicine: A minireview. Instrum Sci Technol 48(6): 667-681.
[3] Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) The general theory of van der Waals forces. Adv Phys 10(38): 165-209.
[4] Taheri M, Bathaee SH (2019) Sensitivity analysis of peripheral parameters in three dimentional nano-manipulation by using HK model. J Sol and Flu Mech 9(2): 123-139.
[5] Korayem MH, Zakeri M (2008) Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM. J Adv Manuf Technol 41(7-8): 714–726.
[6] Curiotto S, Cheynis F, Müller P, Leroy F (2020) 2D Manipulation of Nanoobjects by Perpendicular Electric Fields: Implications for Nanofabrication. ACS Appl Nano Mater 3(2): 1118–1122.
[7] Korayem MH, Jahanshahi M, Khaksar H (2020) Modeling and simulation of the dynamics, contact mechanics and control of the nanomanipulation of elliptical porous alumina nanoparticles based on atomic force microscopy. Eur J Mech A Solids 84: 104060-1-15.
[8] Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJL, Müller DJ (2018) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1(1): 41-57.
[9] Korayem MH, Badkoobehhezaveh H, Taheri M (2017) Experimental Determination of HT29 Cancerous Cell Surface Roughness by Atomic Force Microscopy to be Applied in Nanomanipulation. J Appl Comput Sci Mech 28(1): 111-122.
[10] Gross L, Schuler B, Pavliček N, Fatayer S, Majzik Z, Moll N, Meyer G (2018) Atomic Force Microscopy for Molecular Structure Elucidation. Angew Chem Int Edition 57(15): 3888–3908.
[11] Gur Y, Ravina I, Babchin AJ (1978) On the electrical double layer theory. II. The Poisson—Boltzmann equation including hydration forces. J Colloid Interface Sci 64(2): 333-341.
[12] Motaghi A, Korayem MH, Zakeri M (2010) Dynamic modeling of 2D nano-manipulation based on AFM in liquid environment. 2010 17th Iranian Conference of Biomedical Engineering (ICBME): 1-4.
[13] Mohammadi SZ, NejatPishkenari H, Mohammadi Moghaddam M (2021) 3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell. J Nanopart Res 23(4): 1-20.
[14] Morag J, Dishon M, Sivan U (2013) The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the Hofmeister universality and its reversal. Langmuir 29(21): 6317-6322.
[15] Taheri M (2022) Investigation of the effect of different friction models on experimental extraction of 3D nanomanipulation force and critical time of colon cancer tissue. Amirkabir J Mech Eng 54(4): 791-804.
[16] Taheri M (2022) Application of atomic force microscopy in critical force and critical time extraction of 2D manipulation for gastric cancer tissue with different friction models, Nanoscale 9(1): 136-145.
[17] Khalili M, Taheri M, Bathaee SH, Shakeri F (2022) Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics. Mech Adv Smart Mater 1 (2): 155-174.
[18] Korayem MH, Rastegar Z (2021) Development of 3D manipulation of viscoelastic biological cells by AFM based on contact models and oscillatory drag. Mech Adv Mater Struct 28(24): 2572-2584.
[19] Korayem MH, Khaksar H (2022) Optimum path planning of elliptic and cubic nanoparticles using one and dual probe atomic force microscopes. Mech Adv Mater Struct 29(15): 2126-2141.
[20] Taheri M, Mirzalou M (2022) Theoretical and Experimental Simulation of Young Modulus Extraction of Breast MCF-10 Cells Using Atomic Force Microscope. Modares Mech Eng 22(01): 37-45.
[21] Korayem MH, Taheri M, Korayem AH (2014) Manipulation with atomic force microscopy: DNA and yeast micro/nanoparticles in biological environments. Proc Inst Mech Eng Part K: J Multi-body Dyn 228(4): 414-425.