مطالعه و آزمایش تجربی بارگذاری خستگی در نانوکامپوزیت‌های ذره‎‌ای آلومینیم 7075 با ذرات سیلیکون کارباید

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی برق، کامپیوتر و مکانیک، دانشگاه غیرانتفاعی ایوان‌کی، ایوان‌کی، ایران

2 استادیار، دانشکده مهندسی برق، کامپیوتر و مکانیک، دانشگاه غیرانتفاعی ایوان‌کی، ایوان‌کی، ایران

3 مربی، دانشکده مهندسی برق، کامپیوتر و مکانیک، دانشگاه غیرانتفاعی ایوان‌کی، ایوان‌کی، ایران

چکیده

آلومینیوم تقویت‌نشده خواص مطلوبی برای استفاده در صنایع حساس نظیر صنایع هوایی و صنایع دریایی ندارد، اما وقتی با ذرات تقویت‌کننده به کامپوزیت تبدیل می‌شود، خواص مکانیکی و دیگر خواص آن بهبود می‌یابد. به منظور دست یابی به مقادیر بهینه تنش تسلیم، استحکام نهایی کشش، شکل‌پذیری و طول عمر خستگی تحت تاثیر دو پارامتر اندازه ذرات و کسر جرمی ذارت تقویت‌کننده، در این پژوهش ابتدا آلومینیوم 6T-7075 به عنوان فاز زمینه و از ذرات سیلیکون‌کارباید به عنوان فاز تقویت‌کننده استفاده شد. طبق طراحی آزمایش انجام شده، سیلیکون‌کارباید با سه اندازه ذره مختلف، در مقیاس‌های نانومتر، زیرمیکرون و میکرون تهیه شد. پودر سیلیکون‌کارباید با کسر جرمی‌های مختلف با آلومینیوم، به روش ریخته‌گری گردابی توسط کوره مقاومتی مجهز به کویل الکترومغناطیسی و پمپ خلأ ترکیب، و نمونه‌های کامپوزیتی طبق طراحی آزمایش انجام شده، ریخته‌گری شدند. سپس نمونه‌ها تحت عملیات انحلال قرار گرفتند. در ادامه عملیات حرارتی 6 Tبر روی نمونه‌ها انجام شد. در انتها آزمون‌های کشش و خستگی بر روی نمونه‌های آزمایشی تهیه شده، طبق استانداردهای مربوطه انجام شد. با توجه به نتایج به‌دست آمده، تقویت کردن آلومینیوم 6T-7075 با ذرات سیلیکون‌کارباید منجر به بهبود خواصی مانند استحکام تسلیم، استحکام نهایی کشش و عمر خستگی شد؛ اما ازدیاد طول و شکل‌پذیری نمونه‌ها کاهش یافت. بهترین نتیجه مربوط به نمونه 1 درصد با اندازه ذرات نانو است که 33/21 درصد استحکام نهایی کشش را بهبود بخشیده است، همچنین بیشترین استحکام خستگی را نیز نمونه 1 درصد با اندازه ذرات نانو داشته است.

کلیدواژه‌ها


[1] Williams JC, Starke EA (2003) Progress         instructural materials for aerospace systems. ActaMater 51(19): 5775–5799.
[2]  Azadi M, Rezanezhad S, Zolfaghari M, Azadi   M (2020) Investigation of tribological and compressive behaviors of Al/SiO2 nanocomposites after T6 heat treatment. Sadhana 45(1): 28.
[3] Davidson D (1989) The growth of fatigue cracks through particulate SiC reinforced aluminum alloys. Eng Fract Mech 33(6): 965-977.
[4] Komai K, Minoshima K,Ryoson H (1993) Tensile and fatigue fracture behavior and water-environment effects in a SiC-whisker/7075-aluminum composite. Compos Sci Technol 46(1): 59-66.
[5] Chen Z, Tokaji K (2004) Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites. Mater Lett 58(17-18): 2314-232.
[6] Kaynak C, Boylu S (2006) Effects of SiC particulates on the fatigue behaviour of an Al-alloy matrix composite. Mater Des 27(9): 776-782
[7] Chawla N, Ganesh V (2010) Fatigue crack growth of SiC particle reinforced metal matrix composites. Int J Fatigue 32(5): 856-863.
[8] Balaji V, Sateesh N, Hussain MM (2015) Manufacture of aluminium metal matrix composite (Al7075-SiC) by stir casting technique. Mater Today: Proc 2(4-5): 3403-3408.
[9] Ezatpour H, Parizi MT,Sajjadi SA, Ebrahimi G, Chaichi A (2016) Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles. Mater Chem Phys178: 119-127.
[10] Antunes F, Serrano S, Branco R, Prates P (2018) Fatigue crack growth in the 2050-T8 aluminium alloy. Int J Fatigue 115: 79-88.
[11] Alalkawi HJM, Khenyab AY, Abduljabar H.A (2019) Improvement of Mechanical and Fatigue Properties for Aluminum Alloy 7049 By Using Nano Composites Technique. Al-Khawarizmi Eng J 15(1): 1- 9.
[12] Mamoon AA, Jaafari AL (2020) Fatigue Behavior of Aluminum SiC Nano Composites Material with Different Reinforcement Ratio.  IOP Conf Ser Mater Sci Eng 870(1): 012159.
[13] Das P, Jayaganthan R, Chowdhury T, Singh I V (2011) Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy. Mater Sci Eng A  528(24): 7124-7132.
[14] Mahathaninwong N, Plookphol T, Wannasin J, Wisutmethangoon S (2012) T6 heat treatment of rheocasting 7075 AL alloy. Mater Sci Eng A 532: 91-99.
[15] Shen Q, Wu C, Luo G, Fang P, Li C, Wang Y,  Zhang L (2014) Microstructure and mechanical properties of Al-7075/B4C composites fabricated by plasma activated sintering. J Alloy Compd 588: 265-270.
[16] Amory K, Amory J, Ahmadifard S, Kazazi M, Kazemi S (2017) Preparation and characterization of A356 composite reinforced with SiC nano- and microparticles by stir casting method. Modares Mech Eng 16(10): 335-342.
[17] Hashim J, Looney L, Hashmi MSJ (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119: 324-328.
[18] Wang N, Wang Z, Weatherly G.C (1992) Formation of magnesium aluminate (spinel) in cast SiC particulatereinforced Al (A356) metal matrix composites. Metall Mater Trans A 23.5: 1423-1430.
[19] Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55: 921-928.
[20] Sritharan T, Chan L, Tan L, Hung N (2001) A feature of the reaction between Al and SiC particles in an MMC. Mater Charact 47(1): 75-77.
[21] Hashim J, Looney L, Hashmi M (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92-93: 1-7.