بررسی رفتار رچتینگ و تکانه یک ورق کربن استیل تحت بارگذاری حرارتی سیکلی و بارگذاری محوری با استفاده از نمودار بیری

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه ملایر، ملایر، ایران

2 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه ملایر، ملایر، ایران

چکیده

پدیده رچتینگ (Ratcheting) به انباشتگی کرنش‌های پلاستیک حاصل از بارگذاری‌های سیکلی اطلاق می‌گردد. در این پژوهش، شبیه‌سازی رفتار رچتینگ ورق از جنس فولاد کربن S275 تحت بارگذاری حرارتی سیکلی و بار محوری مورد بررسی قرار گرفته است. این تحلیل با استفاده از روش المان محدود و به کار گیری زبان طراحی پارامتری انسیس (APDL) انجام شده است. هدف از انجام این پژوهش بررسی نمودار بیری و شبیه‌سازی رفتار‌های مشخص شده در این نمودار بر اساس پارامتر‌های دما و فشار می‌باشد. با توجه به نتایج بدست آمده مشخص شد که کرنش رچتینگ همیشه در سیکل‌های اول بزرگ‌تر از سیکل‌های بعدی می‌باشد اما در حالت پلاستیک، کرنش پلاستیک در هنگام بارگذاری حرارتی برابر با زمان حذف بارگذاری حرارتی است. در ناحیه‌ی شیک‌دان (Shakedown) نیز پس از اولین کرنش پلاستیک، رفتار الاستیک در ورق ایجاد می‌شود. در آخر مشخص شد که این نمودار کاربرد منحصر به فردی در پیش‌بینی رفتار انواع ورق‌ها دارد و می‌توان از ورق با هر ابعاد و جنسی برای بررسی رفتار شیک‌دان، رچتینگ، الاستیک و پلاستیک استفاده کرد.

کلیدواژه‌ها


[1] Updike D (1975) Thermal ratcheting under biaxial stress states. Nucl Eng Des 33(3): 387-397.
[2] Feigenbaum HP, Dugdale J, Dafalias YF, Kourousis KI, Plesek J (2012) Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules. Int J Solid Struct 49(22): 3063-3076.
[3] Shen J, Chen H, Liu Y (2018) A new four-dimensional ratcheting boundary: Derivation and numerical validation. Eur J Mech A-Solid 71: 101-112.
[4] Abdalla H (2019) Effect of wall thinning on the shakedown interaction diagrams of 90-degree back-to-back bends subjected to simultaneous steady internal pressures and cyclic in plane bending moments. Thin-Wall Struct 144: 106228.
[5] Moslemi N, Zardian MG, Ayob A, Redzuan N, Rhee S (2019) Evaluation of sensitivity and calibration of the chaboche kinematic hardening model parameters for numerical ratcheting simulation. Appl Sci 9: 2578.
[6] Mehrabi H (2014) Experimental study of ratcheting influence on fatigue life of Ck45 in uniaxial cyclic loading. Modares Mechanical Engineering 13(10): 75-83.
[7] شریعتی م، نژاد ج­ی (2015) تحلیل تجربی رفتار رچتینگ لوله پلیاستال تحت بارگذاری متناوب تک محوره و فشار داخلی. مهندسی مکانیک امیرکبیر.
[8] Groβ-Weege J, Weichert D (1992) Elastic-plastic shells under variable mechanical and thermal loads. Int J Mech Sci 34(11): 863-880.
[9] Megahed M (1981) Influence of hardening rule on the elasto-plastic behaviour of a simple structure under cyclic loading. Int J Mech Sci 23(3): 169-182.
[10] Auricchio F, Taylor RL (1995) Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity. Int J Plast 11(1): 65-98.
[11] Abdel-Karim M, Ohno N (2000) Kinematic hardening model suitable for ratchetting with steady-state. Int J Plast 16(3-4): 225-240.
[12] Kang G, Kan Q (2007) Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel. Mech Mater 39(5): 488-499.
[13] Yu D, Chen G, Yu W, Li D, Chen X (2012) Visco-plastic constitutive modeling on Ohno–Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18. 12N steel. Int J Plast 28(1): 88-101.
[14] Bradford R, Ure J, Chen H (2014) The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting. Int J Pressure Vessels Piping 113: 32-39.
[15] Ziya-Shamami M, Babaei H, Mirzababaie Mostofi T, Khodarahmi H (2021) Experimental investigation of large plastic deformation of single-and multi-layered circular aluminum plates under repeated uniform impulsive loading. Journal of Solid and Fluid Mechanics 11(1): 123-137.
[16] Sagar V, Payne D (1975) Incremental collapse of thick-walled circular cylinders under steady axial tension and torsion loads and cyclic transient heating. J Mech Phys Solid 23(1): 39-53.
[17] Megahed MM (1990) Influence of hardening rule on prediction of cyclic plasticity in pressurized thin tubes subjected to cyclic push-pull. Int J Mech Sci 32(8): 635-652.
[18] Shiratori E, Ikegami K, Yoshida F (1979) Analysis of stress-strain relations by use of an anisotropic hardening plastic potential. J Mech Phys Solid 27(3): 213-229.
[19] Jiang Y, Kurath P (1996) Characteristics of the Armstrong-Frederick type plasticity models. Int J Plast 12(3): 387-415.
[20] Palgen L, Drucker D (1983) The structure of stress-strain relations in finite elasto-plasticity. Int J Solids Struc. 19(6): 519-531.
[21] Ohno N, Wang J (1993) Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior. Int J Solids Struct 9(3): 375-390.
[22] Chen X, Jiao R, Kim K (2005) On the Ohno Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel. Int J Plast 21: 161-184.
[23] Chaboche JL (1994) Modeling of ratchetting: evaluation of various approaches. Eur J Mech A-Soli. 13: 501-518.
[24] Chen X, Chen H, Zhao L (2019) Ratcheting behavior of pressurized corroded straight pipe subjected to cyclic bending. Thin-Wall Struct 145: 106410.
[25] Wada H, Igari T, Kitade S (1989) Prediction method for thermal ratcheting of a cylinder subjected to axially moving temperature distribution. Trans Jpn Soc Mech Eng A 55(512): 985-993.
[26] Angiolini M, Aiello G, Matheron P, Pilloni L, Giannuzzi G (2016) Thermal ratcheting of a P91 steel cylinder under an axial moving temperature distribution. J Nucl Mater 472: 215-226.
[27] Paul SK, Sivaprasad S, Dhar S, Tarafder S (2010) Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. J Nucl Mater 401(1-3): 17-24.
[28] Hassan T, Kyriakides S (1992) Ratcheting in cyclic plasticity, part I: Uniaxial behavior. Int J Plast 8(1): 91-116.
[29] Bree J (1967) Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J Strain Anal 2(3): 226-238.
[30] Resapu RR, Perumahanthi LR (2021) Numerical study of bilinear isotropic & kinematic elastic–plastic response under cyclic loading. Mater Today Proc 39: 1647-1654.
[31] Sahoo P, Chatterjee B, Adhikary D (2010) Finite element based elastic-plastic contact behavior of a sphere against a rigid flat-effect of strain hardening. Int J Eng Technol 2(1): 1-6.
[32] Damadam M, Moheimani R, Dalir H (2018) Bree's diagram of a functionally graded thick-walled cylinder under thermo-mechanical loading considering nonlinear kinematic hardening. Case Stud Therm Eng 12: 644-654.
[33] Ure J, Chen H, Li T, Chen W, Tipping D, Mackenzie D (2011) A direct method for the evaluation of lower and upper bound ratchet limits. Procedia Eng 10: 356-361.
[34] Gardner L, Cruise RB, Sok CP, Krishnan K Ministro Dos Santos J (2007) Life-cycle costing of metallic structures. J Inst Civ Eng-Eng Sustainability, Thomas Telford Ltd 167-177.
[35] Bree J (1989) Plastic deformation of a closed tube due to interaction of pressure stresses and cyclic thermal stresses. Int J Mech Sci 31(11-12): 865-892.
[36] Ezzati M, Naghipour M, Zeinoddini M, Zandi A, Elyasi M (2021) Strain ratcheting failure of dented steel submarine pipes under combined internal pressure and asymmetric inelastic cycling. Ocean Eng 219: 108336.
[37] Cho NK, Chen H (2018) Shakedown, ratchet, and limit analyses of 90 back-to-back pipe bends under cyclic in-plane opening bending and steady internal pressure. Eur J Mech A-Solid 67: 231-242.