مطالعه رفتار تنش-کرنش ساختار پلی‌کریستال کاربید بورِ دارای ترک، در حضور متوقف کننده ترک و در شرایط دمایی مختلف، به روش دینامیک مولکولی

نوع مقاله : مقاله مستقل

نویسنده

استادیار، گروه مهندسی مکانیک، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران

چکیده

ساختارهای دو بعدی بر پایه‌ی اتم کربن مانند گرافن، کربن نیترید (C3N) و کاربید بور (BC3)، دارای خصوصیات مکانیکی و حرارتی قابل توجهی هستند. در این مقاله، تأثیر ترک، متوقف کننده‌ی ترک و دما بر خواص مکانیکی ساختار پلی‌کریستال کاربید بور با استفاده از مدلسازی دینامیک مولکولی مورد بررسی قرار گرفت. درک عملکرد نانوصفحات کاربید بور در حضور ترک که از آن به عنوان منبع اصلی تمرکز تنش یاد می‌شود، به عنوان یک فرآیند مهم تعریف می‌شود. با این هدف و با استفاده از پتانسیل ترسوف و شرایط مرزی دوره‌ای، اثر وجود ترک با طول 5 آنگستروم، متوقف کننده‌ی ترک با فاصله‌های 2 و 4 آنگستروم از لبه‌ی ترک و دماهای مختلف مورد تحلیل قرار گرفت. نتایج نشان داد که افزایش دما در حضور و عدم حضور ترک در ساختار کاربید بور، باعث کاهش مقدار خواص مکانیکی می‌شود. مدول یانگ ساختار بدون نقص (C0-D0) و ساختار با حضور متوقف کننده‌های ترک با دو فاصله‌ی 2 (C5-D2) و 4 (C5-D4) آنگستروم از ترک به ترتیب %21/17، %12/42 و %84/47 کاهش یافت. این روند نزولی برای خواص مکانیکی تنش و کرنش در نقطه‌ی شکست نیز مشاهده شد. علاوه بر این، خواص مکانیکی C5-D2 بالاتر از C5-D4 گزارش شد که بیانگر آن است ترک در این ساختار انرژی بیشتری را صرف شکست کرده است و باعث افزایش مقاومت ساختار مورد بررسی شده است.

کلیدواژه‌ها


[1] Li J, Wu M, Yang G, Zhang D, Wang Z, Zheng D, Yu J (2020) Bottom-up passivation effects by using 3D/2D mix structure for high performance p-i-n perovskite solar cells. Sol Energy 205(2): 44-50.
[2] Liang G, Zhang J, An S, Tang J, Ju S, Bai S, Jiang D (2021) Phase change material filled hybrid 2D / 3D graphene structure with ultra-high thermal effusivity for effective thermal management. Carbon 176(3): 11-20.
[3] Wu Y, Yang L (2021) Modeling of the effect of local material imperfection to the structural mechanical property variability of 2D finite-size cellular structures. Compos Struct 262(6): 113610.
[4] Meng S, Wu H, Cui Y, Zheng X, Wang H, Chen S, Wang Y, Fu X (2020) One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Appl Catal B 256(2): 118617.
[5] Wang M, Meng F, Hou D, Han Y, Ren J, Bai C, Wang B, Zhou T (2019) Electronic structure and spin properties study on 2D h-BN nanosheet with Ti or Fe doping. Solid State Commun 307(7): 113803.
[6] Trivedi R, Mishra V (2021) Exploring the structural stability order and electronic properties of transition metal M@Ge12 (M = Co, Pd, Tc, and Zr) doped germanium cage clusters–A density functional simulation. J Mol Struct 1226(4): 129371.
[7] Juvaid MM, Rao R (2021) Wafer scale growth of MoS2 and WS2 by pulsed laser deposition. Mater Today Proc 35(8): 494-496.
[8] Zhao ZC, Yang CL, Meng QT, Wang MS, Ma XG (2020) ZnCdO2 monolayer — A complex 2D structure of ZnO and CdO monolayers for photocatalytic water splitting driven by visible-light. Spectrochim. Acta Part A 230(1): 118068.
[9] Song T, Long B, Yin S, Ali A, Deng G (2021) Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light. Chem Eng J 404(2): 126455.
[10] Belasfar K, Houmad M, Boujnah M, Benyoussef A, Kenz AE (2020) First-principles study of BC3 monolayer as anodes for lithium-ion and sodium-ion batteries. J Phys Chem Solids 139(5): 109319.
[11] Ghasemi H, Rutledge JE, Yazdani H (2020) Mechanical properties of defective cyanoethynyl (2D polyaniline – C3N): A comparative molecular dynamics study versus graphene and hexagonal boron nitride. Physica E 121(4): 114085.
[12] Huang G, Guo X, Cao X, Tian Q, Sun H (2017) Formation of graphene-like 2D spinel MnCo2O4 and its lithium storage properties. J Alloys Compd 695(3): 2937-2944.
[13] Lisesivdin BS, Lisesivdin SB, Ozbay E, Jelezko F (2020) Structural parameters and electronic properties of 2D carbon allotrope: Graphene with a kagome lattice structure. Chem Phys Lett 760(2): 138006.
[14] Ivanov DS, Lomov SV (2015) 2 - Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications. Pol. Comp. Aero Indst 21-52.
[15] Molaei MJ (2020) Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Delivery Sci Technol 101830.
[16] Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira LFC, Rabczuk T (2019) Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors. Carbon 149(4): 733-742.
[17] Salmankhani A, Karimi Z, Mashhadzadeh AM, Dehghani MZ, Saeb MR, Fierro V, Clezard A (2021) A theoretical scenario for the mechanical failure of boron carbide nanotubes. Comput Mater Sci 186(3): 110022.
[18] Dadrasi A, Albooyeh AR, Mashhadzadeh AH (2019) Mechanical properties of silicon-germanium nanotubes: A molecular dynamics study. Appl Surf Sci 498(7): 143867.
[19] Khalkhali M, Rajabpour A, Khoeini F (2019) Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling. Sci Rep 9(2): 5684.
[20] Senturak AE, Oktem AS, Konukman AES (2020) Thermal conductivity and mechanical properties of graphene-like BC2, BC3 and B4C3. Mol Simul 46(12): 879-888.
[21] Mortazavi B, Cuniberti G (2014) Mechanical properties of polycrystalline boron-nitride nanosheets. R Soc Chem 4(7): 19137-19143.
[22] Chen MQ, Quek SS, Sha ZD, Chiu CH, Pei QX, Zhang YW (2015) Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene – A molecular dynamics study. Carbon 85(11): 135-146.
[23] Jam AN, Abadi R, Izadifar M, Rabczuk T (2018) Molecular dynamics study on the mechanical properties of carbon doped single-layer polycrystalline boron-nitride nanosheets. Comput Mater Sci 153(3): 16-27.
[24] Sha ZD, Quek SS, Pei QX, Liu ZS, Wang TJ, Shwnoy VB, Zhang YW (2013) Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene. Sci Rep 4(3): 5991.
[25] Izadifar M, Thissen P, Abadi R, Jam AN, Gohari S, Burvill C, Rabczuk T (2019) Fracture toughness of various percentage of doping of boron atoms on the mechanical properties of polycrystalline graphene: A molecular dynamics study. Physica E 114(1): 113614.
[26] Lu M, Wang F, Zeng X, Chen W, Zhang J (2020) Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics. Theor Appl Fract Mech 105(12): 102402.
[27] Adcock SA, McCammon JA (2006) Molecular   Dynamics:  Survey of Methods for Simulating the Activity of Proteins. ACS Publication 106(5): 1589-1615.
[28] Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modeling Simul Mater Sci Eng 18(1): 015012.
[29] Lee BS, Park S (2019) Applying Tersoff-potential and bond-softening models in a molecular dynamics study of femtosecond laser processing. J Appl Phys 126(3): 045109.
[30] Guo FL, Tan D, Wu T, Huang P, Li YQ, Hu N, Fu SY (2021) Experimental characterization and molecular dynamics simulation of thermal stability, mechanical properties and liquid oxygen compatibility of multiple epoxy systems for cryotank applications. Extreme Mech Lett 101227.
[31] Saleh M, Hofer TS (2021) Theoretical insight on the solvation properties of Zn2+ in pure liquid ammonia: A quantum mechanical molecular charges field molecular dynamics (QMCF-MD) study. J Mol Liq 324(11): 114737.
[32] Dehghani MZ, Mashhadzadeh AH, Salmankhani A, Karimi Z, Habibzadeh S, Ganjali MR, Saeb MR (2020) Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: A molecular dynamics simulation analysis. Eng Fract Mech 235(12): 107194.
[33] آل­بویه ع­ر، اکبری ح، شیخ محمدی ن، فولادپنجه س (1400) تأثیر دما و رشد ترک بر ضریب شدت تنش ساختار پلی کریستال گرافن: مطالعه شبیه سازی دینامیک مولکولی. نهمین کنفرانس بین المللی مهندسی مواد و متالورژی ایران.
[34] Bao H, Huang Y, Yang Z, Sun Y, Bai Y, Miao Y, Chu PK, Xu K, Ma F (2018) Molecular Dynamics Simulation of Nanocrack Propagation in Single-Layer MoS2 Nanosheets. J Phys Chem C 122(5): 1351-1360.
[35] Zarghami MZ, Safa ME, Yousefi F, Salmankhani A, Karami Z, Dadrasi A, Mashhadzadeh AH, Stadler FJ, Saeb MR (2021) Fracture behavior of SiGe nanosheets: Mechanics of monocrystalline vs. polycrystalline structure. Eng Fract Mech 251(2): 107782.
[36] Khadka R, Baishnab N, Opletal G, Sakidja R (2020) Study of amorphous boron carbide (a-BxC) materials using Molecular Dynamics (MD) and Hybrid Reverse Monte Carlo (HRMC). J Non-Cryst Solids 530(2): 119783.
[37] Salmankhani A, Karimi Z, Mashhadzadeh AH, Dehghani MZ, Saeb MR, Fierro V, Celzard A (2021) A theoretical scenario for the mechanical failure of boron carbide nanotubes. Comput Mater Sci 186(4): 110022.
[38] Liu X, Kim SY, Lee SH, Lee B (2021)  Atomistic investigation on initiation of stress corrosion cracking of polycrystalline Ni60Cr30Fe10 alloys under high-temperature water by reactive molecular dynamics simulation. Comput Mater Sci 187(1): 110087.
[39] Lu M, Wang F, Zeng X, Chen W, Zhang J (2020) Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics. Theor Appl Fract Mech 105(3): 102402.
[40] Yang Q, Hwang C, Marvel CJ, Chauhan A, Domnich V, Khan AU, LaSalvia JC, Harmer MP, Hemker KJ, Haber RA (2019) Fabrication and characterization of arc melted Si/B co-doped boron carbide. J Eur Ceram Soc 39(16): 5156-5166.
[41] Wang R, Wang J, Dong T, Ouyang G (2020) Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study. Constr Build Mater 240(2): 117935.
[42] آل­بویه ع­ر، رضوی کیا م­ا، شیخ محمدی ن، فولادپنجه س (1400) خواص مکانیکی ساختار پلی کریستال گرافن از شبیه سازی دینامیک مولکولی: نقش دما و عیوب هندسی. نهمین کنفرانس بین المللی مهندسی مواد و متالورژی.