بررسی فلاتر پنل با پوشش لایه میراکننده مقید یکپارچه و دوتکه شده

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، دانشکده فناوری‌های نوین و مهندسی هوافضا، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، دانشکده فناوری‌های نوین و مهندسی هوافضا، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در این مطالعه عملکرد لایه میراکننده مقید ویسکوالاستیک با پوشش سراسری و موضعی در جلوگیری از وقوع فلاتر و میراکردن ارتعاشات پنل با توجه ویژه به اثر سه عامل مهم و کمتر مورد توجه قرار گرفته شده، شامل قیدهای درون‌صفحه‌ای لبه‌های پنل، مکان قرار گرفتن لایه میرا‌کننده و ایجاد بریدگی در لایه میراکننده مورد بررسی قرار گرفته است. پنل با عرض بینهایت مدل شده و برای هسته‌، کرنش ‌راستای ضخامت و نظریه تغییر شکل برشی مرتبه بالا لحاظ شده است. مدل اجزاء محدود بر اساس المان‌های یک بعدی سه‌گرهی با توابع شکل لاگرانژی و هرمیتی ساخته و برای فشار آیرودینامیکی از نظریه پیستون استفاده شده است. مطالعات پارامتریک با هدف تعیین تأثیر شرایط مرزی درون‌صفحه‌ای، مکان نصب لایه میرا‌کننده و مزیت دو تکه کردن آن نسبت به حالت یکپارچه انجام شده است. طبق نتایج ، قید درون-صفحه‌ای نقش مهمی در تغییرات مرز فلاتر داشته و با جابجایی لایه‌ی میرایی مقید می‌توان کارایی این روش را بهبود بخشید. ضمن اینکه مکان بهینه برای دستیابی به بیشترین میرایی ارتعاشی منطبق بر مکان بهینه برای دستیابی به بیشترین مرز فلاتر نخواهد بود. به‌علاوه، مشخص شد که علیرغم امکان استفاده از ایجاد بریدگی برای افزایش میرایی ارتعاشات نمی‌توان از آن برای بهبود عملکرد روش در افزایش مرز فلاتر استفاده کرد.

کلیدواژه‌ها


[1] Sheng M, Guo Z, Qin Q, He Y (2018) Vibration characteristics of a sandwich plate with viscoelastic periodic cores. Compos Struct 206: 54-69.
[2] Kerwin Jr EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31(7): 952-962.
[3] Cunha-Filho A, De Lima A, Donadon M, Leão L (2016) Flutter suppression of plates subjected to supersonic flow using passive constrained viscoelastic layers and Golla–Hughes–McTavish method. Aerosp Sci Technol 52: 70-80.
[4] Mead D, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10(2): 163-175.
[5] Austin EM, Inman DJ (2000) Some pitfalls of simplified modeling for viscoelastic sandwich beams. J Vib Acoust 122(4): 434-439.
[6] Liu B, Zhao L, Ferreira A, Xing Y, Neves A, Wang J (2017) Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method. Compos B Eng 110: 185-192.
[7] Filippi M, Carrera E (2017) Various refined theories applied to damped viscoelastic beams and circular rings. Acta Mech 228(12): 4235-4248.
[8] Ren S, Zhao G (2019) A four-node quadrilateral element for vibration and damping analysis of sandwich plates with viscoelastic core. J Sandw Struct Mater 21(3): 1072-1118.
[9] Kung S-W, Singh R (1998) Complex eigensolutions of rectangular plates with damping patches. J Sound Vib 216(1): 1-28.
[10] Guo Z, Sheng M, Pan J (2017) Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores. J Sound Vib 400: 227-247.
[11] Di Dato B, Cicirello A, Chatzis M On the vibration performance assessment of a plate with damaged constrained layer damping patches. In: Journal of Physics: Conference Series, 2018. IOP Publishing 1: 012034.
[12] Kumar N, Singh S (2010) Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer. Compos Struct 92(2): 233-243.
[13] Plunkett R, Lee C (1970) Length optimization for constrained viscoelastic layer damping. J Acoust Soc Am 48(1B): 150-161.
[14] Trompette P, Fatemi J (1997) Damping of beams. Optimal distribution of cuts in the viscoelastic constrained layer. Struct Optimization 13(2-3): 167-171.
[15] Tian S, Xu Z, Wu Q, Qin C (2016) Dimensionless analysis of segmented constrained layer damping treatments with modal strain energy method. Shock Vib 2016.
[16] Kadam A, Hujare P (2014) Optimization of segmented constrained layer damping literature review. Int J Eng Adv Technol 3(5):151-153.
[17] Hujare PP, Sahasrabudhe AD, Chinchawade SD Experimental and numerical analysis of the effect of segmentation on modal loss factor of constrained layer damped beam. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2014. ASME V008T011A090.
[18] Lepoittevin G, Kress G (2010) Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data. Mater Des 31(1): 14-24.
[19] Oulmane A, Ross A (2020) Effects of material parameters on the transient dynamics of an impacted plate with partial constrained layer damping treatment. J Acoust Soc Am 147(3): 1939-1952
[20] Cunha-Filho A, De Lima A, Donadon M, Leão L (2016) Flutter suppression of plates using passive constrained viscoelastic layers. Mech Syst Signal Process 79: 99-111.
[21] Yang XD, Yu TJ, Zhang W, Qian YJ, Yao MH (2016) Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer. Compos Struct 137: 105-113.
[22] Shin WH, Oh IK, Han JH, Lee I (2006) Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments. J Sound Vib 296(1-2): 99-116.
[23] Shin WH, Oh IK, Lee I (2009) Nonlinear flutter of aerothermally buckled composite shells with damping treatments. J Sound Vib 324(3-5): 556-569.
[24] Mahmoudkhani S, Sadeghmanesh M, Haddadpour H (2016) Aero-thermo-elastic stability analysis of sandwich viscoelastic cylindrical shells in supersonic airflow. Compos Struct 147: 185-196.
[25] نظامی م (2019) بررسی فلاتر مافوق صوت تیر ساندویچی لانه زنبوری حاوی لایه پوششی سرمتی تحت بار در حال حرکت. نشریه علمی مکانیک سازه­ها و شاره­ها 208-195 :(4)9.
[26] Livani M, Malekzadeh Fard K, Shokrollahi S (2016) Buckling and flutter analyses of composite sandwich panels under supersonic flow. Modares Mechanical Engineering 16(7): 99-110.
[27] Asgari M, Rayyat Rokn-Abadi M, Yousefi M, Haddadpour H (2019) Aeroelastic analysis of a sandwich panel with partially treated magneto-rheological fluid core. J Intell Mater Syst Struct 30(1): 140-154.
[28] Frostig Y, Thomsen OT (2004) High-order free vibration of sandwich panels with a flexible core. Int J Solids Struct 41(5-6): 1697-1724.
[29] Drake ML (1989) Damping properties of various materials [Internet]. University of Dayton Research Institute.
[30] Dowell EH (1974) Aeroelasticity of plates and shells. vol 1. Springer Science & Business Media.
[31] Ashley H, Zartarian G (1956) Piston theory-a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23(12): 1109-1118.
[32] Mahmoudkhani S, Kolbadi-Hajikalaee S (2020) Effect of temperature variation and mass distribution on the optimal design of the constrained-layer-damping for a beam. Modares Mechanical Engineering 20(3): 539-551.