تحلیل ترمودینامیکی به کارگیری کمپرسور در تبدیل کننده‌های حرارت جذبی با محلول‌های آمونیاک-لیتیوم نیترات و آمونیاک-سدیم تیوسیانات

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 دانشیار، مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

4 دانشجوی دکتری، مهندسی مکانیک، دانشگاه تبریز،تبریز،ایران

چکیده

در این مقاله، تبدیل کننده‌های حرارت جذبی با کمپرسور در سه آرایش مختلف معرفی شده‌ و از لحاظ ترمودینامیکی با آرایش ساده این سیکلها مقایسه شده‌اند. محلول‌های آب-لیتیوم بروماید، آمونیاک-لیتیوم نیترات و آمونیاک-سدیم تیوسیانات به عنوان محلول کاری در این سیستم‌ها مورد استفاده قرار گرفته‌اند. نتایج نشان می‌دهند که سیستم‌های آب-لیتیوم بروماید نسبت به سیستم‌های آمونیاک-لیتیوم نیترات و آمونیاک-سدیم تیوسیانات دارای گرمای تحویلی با دمای پایین‌تر، حداقل دمای ژنراتور و اواپراتور بزرگتر و احتمال وقوع پدیده کریستالیزاسیون بیشتر می‌باشد. همچنین نتایج نشان می‌دهند که افزودن کمپرسور به تبدیل کننده‌های حرارت جذبی ساده باعث افزایش دمای گرمای تحویلی، کاهش حداقل دمای ژنراتور و اواپراتور و افزایش نسبت انرژی اولیه و بازده قانون دوم ترمودینامیک به خصوص در دماهای ابزوربر بالاتر می‌شود. سیستم‌ها با محلول آمونیاک-سدیم تیوسیانات نسبت به سیستم‌ها با محلول آمونیاک-لیتیوم نیترات، دارای حداقل دمای ژنراتور و اواپراتور پایین‌تر و دمای ابزوربر بالاتر می‌باشند ولی به جز در دماهای بالای ابزوربر، نسبت انرژی اولیه و بازده قانون دوم پایین‌تری دارند.

کلیدواژه‌ها


[1] سعید قوامی و همکاران (1397) تحلیل انرژی و اگزرژی و بهینه سازی یک سیستم تولید چندگانه با تلفیق سیکل‌های توربین گاز- راکتور هلیوم مدولار، تبرید جذبی، ریفرمینگ بخار آب و آب شیرین‌کن رطوبت‌زن-رطوبت‌زدا. مهندسی مکانیک مدرس 642-631 :(3)19.
[2] Abdolalipouradl M, et al. (2020) A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints. Energy 209: 118235.
[3] Abdolalipouradl M, et al. (2020) Thermodynamic and exergoeconomic analysis of two novel tri-generation cycles for power, hydrogen and freshwater production from geothermal energy. Energy Convers. Manag 226: 113544.
[4] Parham K, et al. (2014) Absorption heat transformers –A comprehensive review. Renew Sust Energ Rev 34: 430-452.
[5] Eisa M, et al. (1986) Thermodynamic design data for absorption heat transformers—part I. Operating on water-lithium bromide. J Heat Recov Sys 6: 421-432.
[6] Rivera W, et al. (2010) Exergy analysis of a heat transformer for water purification increasing heat source temperature. Appl Therm Eng 30: 2088-2095.
[7] Ishida M, Ji J (1999) Graphical exergy study on single stage absorption heat transformer. Appl Therm Eng 19:  1191-1206.
[8] Kurem E, Horuz I (2001) A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. Int Commun Heat Mass 28: 427-438.
[9] Farshi, LG, et al. (2014) First and second law analysis of ammonia/salt absorption refrigeration systems. Int J Refrig 40: 111-121.
[10] Best R, et al. (1990) Thermodynamic design data for absorption heat transformers—part four. operating on ammonia-lithium nitrate. Heat Recov Syst CHP 10: 539-548.
[11] Best R, et al. (1992) Thermodynamic design data for absorption heat transformers—Part 5. Operating on ammonia-sodium thiocyanate. Heat Recov Syst CHP 12: 347-356.
[12] Ferreira CI (1984) Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Sol Energy 32: 231-236.
[13] Hernández-Magallanes JA, et al. (2017) Comparison of single and double stage absorption and resorption heat transformers operating with the ammonia-lithium nitrate mixture. Appl Therm Eng 125: 53-68.
[14] Heard CL, et al. (2016) Characteristics of an ammonia/lithium nitrate double effect heat pump-transformer. Appl Therm Eng 99: 518-527.
[15] خلیلی س، گروسی فرشی ل (1396) تحلیل ترمودینامیکی پمپ حرارتی جدید ترکیبی- اجکتوری و مقایسه با پمپ حرارتی ترکیبی. مهندسی مکانیک مدرس 432-423 :(8)7.
[16] Dincer I, Kanoglu M (2010) Refrigeration systems and applications. 2nd edn. Wiley Online Library.
[17] Klein S (2013) Engineering equation solver (EES).
[18] Gilani S, Ahmed M (2015) Solution crystallization detection for double-effect LiBr-H2O steam absorption chiller. Energy Procedia 75: 1522-1528.
[19] Farshi LG, et al. (2018) Thermodynamic analysis of a cascaded compression – Absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery. Appl Therm Eng 128: 282-296.
[20] Jensen JK, et al. (2015) Technical and economic working domains of industrial heat pumps: Part 2 – Ammonia-water hybrid absorption-compression heat pumps. Int J Refrig 55: 183-200.
[21] Ommen T, et al. (2015) Technical and economic working domains of industrial heat pumps: Part 1 – Single stage vapour compression heat pumps. Int J Refrig 55: 168-182.