[1] Zahedinejad P (2016) Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment. Int J Str Stab and Dyn 16(7): 1550029-51.
[2] Li SR, Wan ZQ, Zhang JH (2014) Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories. App Math and Mech 35(5): 591-606.
[3] Ziou H, Guenfoud H, Guenfoud M (2016) Numerical modelling of a Timoshenko FGM beam using the finite element method. Int J Str Eng 7(3): 239-6.
[4] Karamanli A (2018) Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. Comp Str 189: 127-36.
[5] ابراهیمی ممقانی ع، حسینی ر، شاهقلی م، سرپرست هـ (1397) تحلیل ارتعاشات عرضی آزاد تیرهای ناهمگن محوری نمایی با شرایط مرزی مختلف. نشریه علمی مکانیک سازهها و شارهها 133-125 :(3)8.
[6] Eisenberger M (1994) Vibration frequencies for beams on variable one-and two-parameter elastic foundations. J Sound Vib 176(5): 577-84.
[7] Catal S (2008) Solution of free vibration equations of beam on elastic soil by using differential transform method. App Math Mod 32(9): 1744-57.
[8] Malekzadeh P, Karami G (2008) A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. App Math Mod 32(7): 1381-94.
[9] محمدی مهر م، قربانپور ع، روستاناوی ب (1394) تحلیل ارتعاشات آزاد پانل استوانه ای ساخته شده از مواد مدرج تابعی قرار گرفته بر روی بستر الاستیک پاسترناک با استفاده از تئوری برشی مرتبه اول. نشریه علمی مکانیک سازهها و شارهها 163-149 :(1)5.
[10] Akbas SD (2015) Free vibration and bending of functionally graded beams resting on elastic foundation. Research on Eng Str Mat 1(1): 25-37.
[11] Wang ZH, Wang XH, Xu GD, Cheng S, Zeng T (2016) Free vibration of two-directional functionally graded beams. Comp Str 135: 191-198.
[12] ترشیزیان مر، اخوت پور ع ح (1394) تحلیل ارتعاشات تیر تیموشنکو ساخته شده از مواد تابعی دو بعدی. فصلنامه علمی پژوهشی دانشگاه آزاد مشهد 100-90 :8.
[13] Şimşek, M (2015) Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Comp Str 133: 968-978.
[14] Abrate S (1995) Vibration of non-uniform rods and beams. J sound vib 185(4): 703-16.
[15] Shahba A, Attarnejad R, Marvi MT, Hajilar S (2011) Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Comp Part B: Eng 42(4): 801-808.
[16] Calim FF (2016) Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Comp Part B: Eng 98: 472-483.
[17] رحمانی ب، نغمه سنج م، حسینی م (1395) کنترل بهینه ارتعاشات عرضی تیر ساخته شده از مواد مدرج تابعی با سطح مقطع متغیر. مجله علمی پژوهشی مهندسی مکانیک تبریز 122-113 :(4)46.
[18] Shafiei N, Kazemi M (2017) Buckling analysis on the bi-dimensional functionally graded porous tapered nano beams. Aerspace Sci Tech 66: 1-11.
[19] Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J of Mech Sci 108: 14-22.
[20] Fouda N, El-Midany T, Sadoun AM (2017) Bending, buckling and vibration of a functionally graded porous beam using finite elemen ts. J App and Comp Mech 3(4): 74-82.
[21] Şimşek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuc Eng Desg 240(4): 697-705.
[22] Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Comp Part B: Eng 51: 175-184.
[23] رحیمی ع ر، لیوانی م، نگهبان برون ع (1400) تحلیل ارتعاشات آزاد تیر مدرج تابعی با وجود ترک عرضی. مجله علمی پژوهشی مهندسی مکانیک تبریز 281-277 :(1)51.
[24] Ghorbanpour Arani, Niknejad S (2020) Dynamic Stability Analysis of Bi-Directional Functionally Graded Beam with Various Shear Deformation Theories under Harmonic Excitation and Thermal Environment. J of Solid Mech.
[25] Lei J, He Y, Li Z, Guo S, & Liu D (2019) Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory. Comp Str 209: 811-829.
[26] Bert CW, Malik M (1996) Differential quadrature method in computational mechanics. a review. App Mech Rev 49(1): 1-28.