[1] Chorin AJ (1997) A numerical method for solving incompressible viscous flow. J Comput Phys 135(2): 118-125.
[2] Darbandi M, Mokarizadeh V, Roohi E (2007) Developing a shock-capturing formulation with higher performance to capture normal standing shock in all-speed regime. Esteglal 25(2): 167-181. (In Persian)
[3] Choi YH, Merkle CL (1991) Time-derivative preconditioning for viscous flows. AIAA 22nd Fluid Dynamics, Plusma Dynamics and Laser Conference. AIAA J 91: 1652.
[4] Turkel E, Radespiel R, Kroll N (1997) Assessment of preconditioning methods for multidimensional aerodynamics. Comput Fluids 26(6): 613-634.
[5] Roe PL (1981) Approximate riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2): 357-372.
[6] Frink NT (1992) Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes. AIAA J 30(1): 70-77.
[7] Volkov K, Karpenko AG (2015) Preconditioning of gas dynamics equations in compressible gas flow computations. Comput Math Math Phys 55(6): 1058-1075.
[8] Goharshadi M, Mirzaei M (2019) A viscous all-speed solver development based on Roe upwind scheme in unstructured database. Modares Mechanical Engineering 34(9): 402-410. (In Persian)
[9] Jameson A (1995) Analysis and design of numerical schemes for gas dynamics 1, artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int J Comut Fluid Dyn 4(3): 171-218.
[10] Tatsumi S, Martinelli L, Jameson A (1995) A new high resolution scheme for compressible viscous flows with shocks. AIAA 33nd Aerospace Sciences Meeting Reno, Nevada.
[11] Nemec M, Zingg DW (2000) Aerodynamic computations using the convective-upstream split pressure scheme with local preconditioning. AIAA J 38(3): 402-410.
[12] Katz A, Folkner D, Sankaran V (2015) An unsteady preconditioning scheme based on convective-upwind split-pressure (CUSP) arti-ficial dissipation. Int J Numer Methods Fluids 78(1): 1-16.
[13] Jameson A, Schmidt W, Turkel E (1981) Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA J 81: 1259.
[14] Dwight R, Brezillon J (2006) Effect of various approximations of the discrete adjoint on gradient-based optimization. Proceedings of the 44th AIAA Aerospace Sciences, Reno Nevada, AIAA 2006: 0690.
[15] Colin Y, Hugues D, Boussuge JF (2011) A robust low speed preconditioning formulation for viscous flow computations. Comput Fluids 47: 1-15.
[16] Jameson A (1995) Optimum aerodynamic design using CFD and control theory. AIAA J 95: 1729.
[17] Jameson A, Martinelli L, Pierce N (1997) Optimum aerodynamic design using the Navier-Stokes equations, 35th Aerospace Sciences Meeting and Exhibit, Reno Nevada, AIAA J 97: 0101.
[18] Nadarajah S, Jameson A (2001) Studies of the continuous and discrete adjoint approaches to viscous automatic shape optimization. AIAA 15th CFD Conference 530 Anaheim, CA.
[19] Moigne AL, Qin N (2004) Variable-fidelity aerodynamic optimization for turbulent flows using a discrete adjoint formulation. AIAA J 42(7): 1281-1292.
[20] Asouti VG, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2008) Continuous and discrete adjoint approaches for shape optimization with low Mach number preconditioning. Int J Numer Methods Fluids 57(1): 1485-1504.
[21] Ritlop R, Nadarajah S (2009) Design of wind turbine profiles via a preconditioned adjoint-based aerodynamic shape optimization. 47th AIAA Aerospace Sciences Meeting, Orlando, Florida.
[22] Allmaras SR, Johnson FT, Spalart PR (2012) Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model. ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island. Hawaii.
[23] Venkatakrishnan V (2015) Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J Comput Phys 118(1): 120-130.
[24] Kitamura K, and Shima E (2012) Simple and parameter-free second slope limiter for unstructured grid aerodynamic simulations. AIAA J 50(6): 1415-1426.
[25] Weiss J, Smith WA (1995) Preconditioning applied to variable and constant density flows. AIAA J 33(1): 2050-57.
[26] Hicks RM, Henne PA (1978) Wing design by numerical optimization. J Aircr 15(1): 407-412.
[27] Nielsen J, Kyle Anderson W (2001) Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes. AIAA J. 0596.
[28] Cook PH, McDonald MA, Firmin MCP (1994) Aerofoil RAE 2822-Pressure distributions and boundary layer and wake measurements. Agard Ar 138: A6-1 to A6-77.
[29] Gregory N, O’Reilly CL (1970) Low Speed Aerodynamic Characteristics of NACA0012 Airfoil Section, Including the Effects of Upper Surface Roughness Simulation Hoarfrost. National Physical Laboratory, NPL Aero Report, 1308.
[30] Holley BM, Hardin LW (2020) Skin friction measurements of transition in high Reynolds number. Adverse Pressure Gradient Flow J Turbomach 142(2).
[31] Van der Berg B (1979) Boundary layer measurements on a two-dimensional wing with flap, NLR TR 79009 U.
[32] Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(1): 795-799.