بکارگیری الگوریتم‌های JST و CUSP در بهینه‌سازی آیرودینامیکی روش الحاقی گسسته در جریان تمام-سرعت لزج روی شبکه بی‌‌سازمان

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری هوافضا ، تهران، دانشگاه صنعتی خواجه‌نصیرالدین طوسی، دانشکده هوافضا

2 استاد دکتری هوافضا ، تهران، دانشگاه صنعتی خواجه‌نصیرالدین طوسی، دانشکده هوافضا

چکیده

در این مقاله در ابتدا یک حلگر تمام-سرعت به روش پیش‌شرط‌گذاری بر روی الگوریتمهای JST و CUSP در جریان لزج توسعه داده شده و با الگوریتم بالادست "رو" مقایسه شده است. در این مقایسه‌ها، نتایج حالت پیش‌شرطی و حالت عادی بدون پیش‌شرطی با یکدیگر مقایسه شده‌اند. نتایج نشان می‌دهد که در سرعتهای کم، کاهش باقیمانده و همگرایی ضرایب آیرودینامیکی در حالت بدون پیش‌شرطی به سختی حاصل‌ می‌شود در حالی که حل معادلات با پیش‌شرطی این مشکل را مرتفع نموده است. در گامی دیگر، کلیه این روشها و الگوریتمها با نتایج تجربی مقایسه و صحت‌سنجی شده‌اند. در اینجا نتایج نشان می‌دهد که دو الگوریتم بالادست "رو" و الگوریتم CUSP تطابق خوبی با نتایج تجربی دارند و الگوریتم CUSP سریعتر می‌باشد. در گام بعدی، بهینه‌سازی آیرودینامیکی به روش حل معادلات الحاقی گسسته بر روی این الگوریتمها پیاده‌سازی شده و نتایج مجددا مقایسه شده‌‍‌اند. در این فاز، گرادیان تابع هدف روش الحاقی گسسته با روش اختلاف محدود مقایسه و اعتبارسنجی شده است. این مقایسه برای هر سه الگوریتم انجام شده است. تطابق قابل قبولی در نتایج بین روش الحاقی گسسته با روش اختلاف محدود مشاهده می‌شود. در یک نتیجه‌گیری کلی می‌توان اذعان داشت که الگوریتم CUSP تا حدودی از دو الگوریتم دیگر سریع‌تر بوده و گزینه مناسبی برای بهینه‌سازی است.

کلیدواژه‌ها


[1] Chorin AJ (1997)  A numerical method for solving incompressible viscous flow. J Comput Phys 135(2): 118-125.
[2] Darbandi M, Mokarizadeh V, Roohi E (2007) Developing a shock-capturing formulation with higher performance to capture normal standing shock in all-speed regime. Esteglal 25(2): 167-181. (In Persian)
[3] Choi YH, Merkle CL (1991) Time-derivative preconditioning for viscous flows. AIAA 22nd Fluid Dynamics, Plusma Dynamics and Laser Conference. AIAA J 91: 1652.
[4] Turkel E, Radespiel R, Kroll N (1997) Assessment of preconditioning methods for multidimensional aerodynamics. Comput Fluids 26(6): 613-634.
[5] Roe PL (1981) Approximate riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2): 357-372.
[6] Frink NT (1992) Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes. AIAA J 30(1): 70-77.
[7] Volkov K, Karpenko AG (2015) Preconditioning of gas dynamics equations in compressible gas flow computations. Comput Math Math Phys 55(6): 1058-1075.
[8] Goharshadi M, Mirzaei M (2019) A viscous all-speed solver development based on Roe upwind scheme in unstructured database. Modares Mechanical Engineering 34(9): 402-410. (In Persian)
[9] Jameson A (1995) Analysis and design of numerical schemes for gas dynamics 1, artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int J Comut Fluid Dyn 4(3): 171-218.
[10] Tatsumi S, Martinelli L, Jameson A (1995) A new high resolution scheme for compressible viscous flows with shocks. AIAA 33nd Aerospace Sciences  Meeting Reno, Nevada.
[11] Nemec M, Zingg DW (2000) Aerodynamic computations using the convective-upstream split pressure scheme with local preconditioning. AIAA J 38(3): 402-410.  
[12] Katz A, Folkner D, Sankaran V (2015) An unsteady preconditioning scheme based on convective-upwind split-pressure (CUSP) arti-ficial dissipation.  Int J Numer Methods Fluids 78(1): 1-16.
[13] Jameson A, Schmidt W, Turkel E (1981) Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA J 81: 1259.
[14] Dwight R, Brezillon J (2006) Effect of various approximations of the discrete adjoint on gradient-based optimization. Proceedings of the 44th AIAA Aerospace Sciences, Reno Nevada, AIAA 2006: 0690.
[15] Colin  Y, Hugues D, Boussuge JF (2011) A robust low speed preconditioning formulation for viscous flow computations. Comput Fluids 47: 1-15.
[16] Jameson A (1995) Optimum aerodynamic design using CFD and control theory. AIAA J 95: 1729.
[17] Jameson A, Martinelli L, Pierce N (1997) Optimum aerodynamic design using the Navier-Stokes equations, 35th Aerospace Sciences Meeting and Exhibit, Reno Nevada, AIAA J 97: 0101.
[18] Nadarajah S, Jameson A (2001) Studies of the continuous and discrete adjoint approaches to viscous automatic shape optimization. AIAA 15th CFD Conference 530 Anaheim, CA.
[19] Moigne AL, Qin N (2004) Variable-fidelity aerodynamic optimization for turbulent flows using a discrete adjoint formulation. AIAA J 42(7): 1281-1292.
[20] Asouti VG, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2008) Continuous and discrete adjoint approaches for shape optimization with low Mach number preconditioning. Int J Numer Methods Fluids 57(1): 1485-1504.
[21] Ritlop R, Nadarajah S (2009) Design of wind turbine profiles via a preconditioned adjoint-based aerodynamic shape optimization. 47th AIAA Aerospace Sciences Meeting, Orlando, Florida.
[22] Allmaras SR, Johnson FT, Spalart PR (2012) Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model. ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island. Hawaii.
[23] Venkatakrishnan V (2015) Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J Comput Phys 118(1): 120-130.
[24] Kitamura K, and Shima E (2012) Simple and parameter-free second slope limiter for unstructured grid aerodynamic simulations. AIAA J 50(6): 1415-1426.
[25] Weiss J, Smith WA (1995) Preconditioning applied to variable and constant density flows. AIAA J 33(1): 2050-57.
[26] Hicks RM, Henne PA (1978) Wing design by numerical optimization. J Aircr 15(1): 407-412.
[27] Nielsen J, Kyle Anderson W (2001) Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes. AIAA J. 0596.
[28] Cook PH,  McDonald MA, Firmin MCP (1994) Aerofoil RAE 2822-Pressure distributions and boundary layer and wake measurements. Agard Ar 138: A6-1 to A6-77.
[29] Gregory N, O’Reilly CL (1970) Low Speed Aerodynamic Characteristics of NACA0012 Airfoil Section, Including the Effects of Upper Surface Roughness Simulation Hoarfrost. National Physical Laboratory, NPL Aero Report, 1308.
[30] Holley BM, Hardin LW (2020) Skin friction measurements of transition in high Reynolds number. Adverse Pressure Gradient Flow J Turbomach 142(2).
[31] Van der Berg B (1979) Boundary layer measurements on a two-dimensional wing with flap, NLR TR 79009 U.
[32] Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(1): 795-799.