[1] Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer Briefs Appl Sci Technol, New York.
[2] Chung BJ, Kim MC, Ahmadinejad M (2008) Film-wise and drop-wise condensation of steam on short inclined plates. J Mech Sci Technol 22(1): 127-133.
[3] Bonner R, (2020) Direct simulations of Biphilic-surface condensation: optimized size effects. Front Heat Mass Transf 14.
[4] Schmidt E, Schurig, W, Sellschopp W, (1930) Versuche uber die kondensation vonwasserdampf in film- und tropfenform. 1: 53-63.
[5] Sikarwar BS, Khandekar S, Muralidhar K (2013) Effect of drop shape on heat transfer during dropwise condensation underneath inclined surfaces.Interfacial Phenom Heat Transf 38(6): 1135-1171.
[6] Vemuri S, Kim KJ (2006) An Experimental and Theoretical Study on the Concept of Dropwise Condensation. Int J Heat Mass Transf 49(3): 649-657.
[7] Neumann AW, Abdelmessih AH, Hameed A (1978) The role of contact angles and contact angle hysteresis in dropwise condensation heat transfer. Int J Heat Mass Transf 21(7): 947-953.
[8]Abdelmessih AH, Neumann AW, Yang SW (1975) The effect of surface characteristics on dropwise condensation. lett heat mass trans 2(4): 285-291.
[9] Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transfer 133(8): 081502-081502-8.
[10] He B, Patankar N A, Lee J (2003) Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19(12) : 4999-5003.
[11] Lafuma A, Quéré D (2003) Superhydrophobic States. Nature Mater 2(7) : 457-460.
[12] Lee, SM, Jung ID, Ko JS (2008) The effect of the surface wettability of nanoprotrusions formed on network-type microstructures. J Micromech Microeng 18(12): 125007.
[13] Saffari H, Sohrabi B, Noori, MR, Talesh Bahrami, HRT (2018) Optimal condition for fabricating superhydrophobic aluminum surfaces with controlled anodizing processes. Appl Surf Sci 435: 1322-1328.
[14] Talesh Bahrami HR, Ahmadi B, Saffari H (2017) Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes. Mater Lett 189: 62-65.
[15] Talesh Bahrami HR., Ahmadi B, Saffari H (2017) Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach. Mater Res Express 4(5): 055014.
[16] Miljkovic N, Enright R, Wang EN (2013) Modeling and optimization of superhydrophobic condensation. J Heat Transfer 135(11): 111004.
[17] Zarei S, Talesh Bahrami HR, Saffari H (2018) Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: A theoretical study. Appl Therm Eng 137: 440-450.
[18] Chen L, Lian S, Yan R, Cheng Y, Huai X, Chen, S (2009) N-octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam. J Therm Sci 18(2): 160-165.
[19] Baojin Q, Li Z, Hong X, Yan, S (2011) Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies. Exp Therm Fluid Sci 35(1): 211-218.
[20] Ucar IO, Erbil HY (2012) Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl Surf Sci 259: 515-523.
[21] Feng J, Qin Z, Yao S (2012) factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. Langmuir 28(14): 6067-6075.
[22] Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8): 988-994.
[23] Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40(0): 546-551.
[24] Talesh Bahrami HR, Zarei S, Saffari H (2019) The effect of droplet morphology on the heat transfer performance of micro-/nanostructured surfaces in dropwise condensation. J Therm Anal Calorim 138: 2979-2988.
[25] Baghel V, Sikarwar BS, Muralidhar K (2019) Modeling of heat transfer through a liquid droplet. Heat Mass Transfer 55(5): 1371-1385.
[26] Phadnis A, Rykaczewski K (2017) The effect of marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces. Int J Heat Mass Transf 115: 148-158.
[27] Pradhan A, Krishnamurthy PK (2018) Visualization of motion inside droplets. In: Pradhan A., Krishnamurthy P. (Eds) Selected Topics in Photonics. IITK Directions,Springer, Singapore.
[28] Brakke K (1992) The Surface Evolver. Exp Math 1(2): 141-165.
[28] Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281(2): 458-464.
[29] Ibrahim J, Masri MA, Veillas C, Celle F, Cioulachtjian S, Verrier I, Lefèvre F, Parriaux O, Jourlin Y (2017) Condensation phenomenon detection through surface plasmon resonance. Opt Express OE 25(20): 24189-24198.
[30] Huang JJ, Shu C, Chew YT (2009) Lattice boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21: 022103.
[31] Kannan R, Sivakumar D (2008) Drop impact process on a hydrophobic grooved surface. Colloid Surface A 317(1-3): 694-704.
[32] Van P. Carey (2007) Liquid vapor phase change phenomena an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. CRC Press.
[33] صفاری ح، میرزاقیطاقی الف، رحیمی ع ( 2015) مدلسازی فشار مویینگی میکروسیالات در میکروساختارها با نرم افزار Surface Evolver. مجله مکانیک سازهها و شارهها 255-247 :(3)5.
[34] خلیلی الف, میرزاقیطاقی الف, صفاری ح (2016) مدلسازی عملکرد حرارتی سیال در تبخیرکننده با میکروساختارهای کروی و میکروستون مخروطی