بررسی آیروآکوستیکی جریان اطراف ایرفویل به روش رهیافت‌های شبیه سازی گردابه‌های بزرگ، گردابه‌های جدا شده و میانگین زمانی رینولدز

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر

2 استاد، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر

3 استاد، دانشکده مهندسی مکانیک، دانشگاه یزد

چکیده

انتخاب رهیافت مناسب شبیه‌سازی عددی و مدل آشفتگی متناسب با مسئله، همواره یک دغدغه جدی برای محققین در حوزه دینامیک سیالات محاسباتی است، به خصوص اگر محاسبات مورد نظر، تحلیل لایه مرزی آشفته و پدیده‌های مرتبط به آن را هدف قرار داده باشند، چون این محاسبات گذرا و پرهزینه هستند و محقق باید از ابتدا روش عددی مناسب را انتخاب کرده تا متحمل هزینه اضافی نشود. در این تحقیق 3 رهیافت عددی، میانگین زمانی رینولدز، شبیه‌سازی گردابه‌های بزرگ و شبیه‌سازی گردابه‌های جدا شده، جهت تعیین خصوصیات آیرودینامیکی و آیروآکوستیکی جریان روی مقطع NACA0012 در شرایط جریانی خاص استفاده شده است. شرایط جریان انتخاب شده به گونه‌ای است که برای آن نتایج تست تجربی نیز وجود دارد. در این تحقیق از شبکه‌بندی که دارای متوسط (Y+

کلیدواژه‌ها


[1] Brooks T, Pope D, Marcolini M (1989) Airfoil self-noise and prediction. National Aeronautics and Space Administration, Scientific and Technical Information Division.
[2] Andrepopoulos J, Agui J (1996) Wall vorticity flux dynamics in two dimensional turbulent boundary layer. Fluid Mec A 309: 45-86.
[3] Kim J (1983) On the structure of wall-bounded turbulent flow. Phys Fluids 26(8): 2088-2097.
[4] Kim J (1989) On the structure of pressure fluctuations in simulated turbulent channel flow.  Fluid Mec A 205: 421.
[5] Chang P, Piomelli U, Blake W (1999) Relationship between wall pressure and velocity-field sources. Phys Fluids 11: 3434-3448.
[6] Kim J, Choi J, Sung H (2002) Relationship between wall-pressure fluctuations and stream wise vortices in a turbulent boundary layer. Phys Fluids 14(2) 898-901.
[7] فرمانی م، دهقان ع ا، افشاری ع (1398) بررسی عددی اثر روش­های مختلف آشفته­سازی بر مشخصه­های جریان لایه مرزی آشفته. بیست و هشتمین همایش سالانه   بین­المللی مهندسی مکانیک ایران ISME2019.
[8] فرمانی م، دهقان ع ا، افشاری ع (1398) پیش­بینی عددی پارامترهای موثر بر نویز لبه فرار جریان لایه مرزی آشفته. نشریه مهندسی مکانیک امیرکبیر.
[9] Ghaemi S, Scarano F (2013) Turbulent structure at high-amplitude pressure peaks with in the turbulent boundary layer. Fluid Mec A 735: 381-426.
[10] Blake W (1986) Mechanics of flow induced sound and vibration. Complex flow-structure interactions vol. II, Academic Press, New York.
[11] Lockard D, Lilley G (2004) The airframe noise reduction challenge. Tech. Rep. NASA/TM-2004-213013, NASA Langley Research Center.
[12] Oerlemans S, Fisher M, Maeder T, Kogler K (2009) Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J 47(6):1470-1481.
[13] Lighthill MJ (1952) On sound generated aerodynamically, general theory. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 211(1107): 564-587.
[14] Moreau S, Christophe J Roger M (2008) LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall. Center of Turbulence Research,  Proceedings of the Summer program 317-329.
[15] Lin Y, Savill M, Rao Vadlamani N, Jefferson-Loveday R (2013) Wall-resolved large eddy simulation over NACA0012 airfoil. Int Aeros Sci Tech 2(4): 149-162.
[16] Greschner B, Zheng S, Wang J, Thiele F (2005) Knowledge based airfoil aerodynamic and aeroacoustic design. AIAA J. DOI:10.2514/6.2005-2968.
[17] Afshari A., Azarpeyvand M., Dehghan A. A. (2017) Effects of streamwise surface Treatments on Traveling edge Noise Reduction. AIAA J. DOI: 10.2514/6.2017-3499.
[18] Spaling D. (1961) A single formula for the Law of the  wall. Appl Mech Mater 28(3): 455-458.
[19] Afshari A, Azarpeyvand M, Dehghan AA, Szoke M, Maryami R (2019) Trailing edge flow minipulation using streamwise finlets. Fluid Mec A 870: 617-650.
[20] Coles D (1956) The law of the wake in the turbulanent boundry layer. Fluid Mec A 1(2): 191-226.
]21[ فرمانی م، دهقان ع ا، افشاری ع (1398) بررسی عددی مدل­های مختلف مرز ورودی بر مشخصه­های جریان لایه مرزی آشفته با رهیافت شبیه­سازی گردابه­های بزرگ. مجله مکانیک سازه­ها و شاره­ها 274-261 :(3)9.
[22] Sagrado AG, Hynes T (2011) Wall-pressure sources near an airfoil trailing edge under separated laminar boundry layers. AIAA J 49(9): 1841-1856.
[23] FowcsWilliams KE, Howkings Hall L (1970) Aerodynamic sound generation by turbulent flow in vicinity of a scattering half plane. Fluid Mec A 40(04): 457-670.
[24] Ducros F, Nicoud F, Poinsot T (1998) Wall-adapting local eddy-viscousity model for simulations in coplex geometries. CERFACS, 42, Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France.
[25] Ma J, Wang F, Tang X (2008) Comparison of several subgrid-scale models for large-eddy simulation of turbulent flows in water turbine. The 4th Internatinal Symposium on Fluid Machinery and Fluid Engineering.
[26] Batchelor GK (1967) An Introduction to fluid dynamics. Cambridge Univ.Press. Cambridge, England.
[27] Hinze JO (1975) Turbulence. McGraw-Hill, New York.
[28] Erlebacher G, Hussaini MY, Speziale CG, Zang TA (1992) Toward the large-eddy simulation of compressible turbulent flows. Fluid Mec A 238: 155-185
[29] Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Month Wea Rev 91: 99-164.