تحریک عملگر از جنس کامپوزیت‌ فلز پلیمر یونی با استفاده از سیگنال‌های الکترومیوگرافی به روش دسته‌بندی فازی

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

کامپوزیت‌های فلز پلیمر یونی گروه جدیدی از مواد پلیمری فعال الکتریکی هستند که با اعمال ولتاژ و در نتیجه حرکت کاتیون‌های داخل پلیمر، دچار تغییر شکل مکانیکی می‌شوند. این مواد کاربردهای زیادی در علوم مختلف از قبیل رباتیک، تجهیزات مهندسی پزشکی و ماهیچه-های مصنوعی دارند. در این مقاله به منظور تحریک عملگر از سیگنال‌های الکترومیوگرافی استفاده می‌شود. سیگنال الکترومیوگرافی یک روش برای ثبت فعالیت الکتریکی تولید شده توسط فایبرهای عضلانی و واحدهای حرکتی می‌باشد. سیگنال الکترومیوگرافی تولید شده توسط انقباض عضلات ساعد دست به عنوان عامل کنترلی جهت تحریک عملگر مورد نظر استفاده می‌شود. به منظور دسته‌بندی سیگنال‌های ماهیچه و تشخیص نوع انقباض، از سیستم دسته‌بندی فازی استفاده می‌شود. در این پژوهش سیستم فازی به دلیل عدم استفاده از یک مدل ریاضی از سیستم مورد توجه قرار گرفته است. به دلیل این‌که سیگنال‌های تولید شده از عضلات فلکسور کارپی دست ضعیف می‌باشند به منظور تغییر شکل بیش‌تر عملگر، سیگنال‌های الکترومیوگرافی قبل از اعمال به عملگر تقویت می‌شوند. نتایج آزمایشگاهی حاصل در این پژوهش، توانایی عملگر کامپوزیت فلز پلیمر یونی را به عنوان ماهیچه مصنوعی که با سیگنال‌های الکترومیوگرافی تحریک می‌شود را تایید می‌نماید.

کلیدواژه‌ها


[1] Lee S, Kim KJ (2006) Muscle-like linear actuator using an ionic polymer-metal composite and its actuation characteristics. Smart Mater Struct 6168: 616-820.
[2] Shahinpoor M, Kim KJ (2004) Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater Struct 13(2): 1362.
[3] Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamental. Smart Mater Struct 10(4): 819.
[4] Liu H, Bian K, Xiong K (2019) Large nonlinear deflection behavior of IPMC actuators analyzed with an electromechanical model. Acta Mech Sin 35(5): 992-1000.
[5] Salehi Kolahi MR, Moeinkhah H (2020) A theoretical model for analysis of ionic polymer metal composite sensors in fluid environments. J Appl 51(1): 21-29.
[6] Jain R, Datta S, Majumder S, (2013) Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics 23(3): 381-394.
[7] Paul A, Dey N, Bhattacharya S (2020). Advancements in instrumentation and control in applied system applications. IGI Global.
[8] MTakaiwa M, Noritsugu T, Ito N, Sasaki D (2011) Wrist rehabilitation device using pneumatic parallel manipulator based on EMG signal. IJAT 5(4): 472-477.
[9] Mulas M, Folgheraiter M, Gini G (2005) An EMG-controlled exoskeleton for hand rehabilitation. 9th International Conference on Rehabilitation Robotics 371-374.
[10] Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40(1): 82-94, 1993.
[11] Ajiboye AB, Weir RF (2005) A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng 13(3): 280-291.
[12] Reaz MBI, Hussain MS, Mohd-Yasin F (2006) Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online 8(1): 11-35.
[13] Yoshikawa M, Mikawa M, Tanaka K, A myoelectric interface for robotic hand control using support vector machine. International Conference on Intelligent Robots and Systems 2723-2728.
[14] Soares A, Andrade A, Lamounier E,  Carrijo R (2003) The development of a virtual myoelectric prosthesis controlled by an EMG pattern recognition system based on neural networks. J Intell Inf Syst 21(2): 127-141.
[15] Khokhar KO, Xiao ZG, Menon C, Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Biomed Eng Online 9(1): 41, 2010.
[16] Kim EH, Lee SW, Lee YK (2011) A dexterous robot hand with a bio-mimetic mechanism. Int J Precis Eng Manuf 12(2): 227-235.
[17] Herrington L (1996) EMG biofeedback: What can it actually show? Physiotherapy 82(10): 581-583.
[18] Yassin M, Abdallah H, Anwer A,  Mustafa A, Mahroos A (2017) Rehabilitation Biofeedback Using EMG Signal Based on Android Platform. 30th International Symposium on Computer-Based Medical Systems  475-480.
[19] Rahmatillah A, Rahma O, Amin M,  Wicaksana SI, Ain K, Rulaningtyas R (2018) Post-stroke rehabilitation exosceleton movement control using EMG signal. Int J Adv Sci Eng Inf Techno 8: 616-621.
[20] Priyadarshini RG, Suryarajan R, Prasad J (2018) Development of electromyogram based rehabilitation device for upper limb amputation using neural network. 3rd International Conference on Communication and Electronics Systems 826-830.
[21] Meng Q, Zhang J, Yang X (2019) Virtual rehabilitation training system based on surface EMG feature extraction and analysis. J Med Syst 43(3): 48.
[22] Jephil PB, Acharaya P, Xu PL, Guo K, Yu H, Watsford M, Rong S, Su S (2020) Estimation of ankle joint torque and angle based on S-EMG signal for assistive rehabilitation robots.  Biomed Signal Process 31-47.
[23] Thinh NT, Yang YS, Oh IK (2009) Adaptive neuro-fuzzy control of ionic polymer metal composite actuators. Smart Mater Struct 18(6): 065016.
[24] Fateh MM, Abedinzadeh Shari M (2015) Adaptive fuzzy control of a mobile manipulator robot. Journal of Solid and Fluide Mechanics 5(2): 211-225. (In Persian) 
[25] Sun W, Lin JW, Su SF, Wang N, Er MJ (2020) Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans Cybern.
[26] Nazari M, Farrokhi M, Nazari M (2019) Fuzzy optimal treatment of AIDS-related non-Hodgkin’s cancer. Journal of Solid and Fluide Mechanics 9(2): 211-225. (In Persian)  
[27] Bitzer S, Van Der Smagt P (2006) Learning EMG control of a robotic hand: towards active prostheses. International Conference on Robotics and Automation 2819-2823.
[28] Merletti R, Parker PJ (2004) Electromyography: physiology, engineering, and non-invasive applications. John Wiley & Sons.
[29] Bar-Cohen Y (2002) Electroactive polymers: Current capabilities and challenges.  Smart Mater Struct 4965:1-7.