تحلیل رزونانس مافوق ‌هارمونیک پوسته جدار نازک مخروطی ناقص تقویت‌شده با سازه مشبّک تحت تحریک نیروی خارجی عرضی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانش‌آموخته‌ی کارشناسی ارشد، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار، آزمایشگاه مکانیک مواد مرکب، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این مقاله رزونانس‌ ثانویه مافوق ‌هارمونیک پوسته‌ی مخروطی ناقص جدار نازکی با تقویت‌کننده‌های رینگی و طولی که به‌صورت مشبّک نسبت به هم قرارگرفته‌اند، مطالعه شده است. نیروی هارمونیک به‌صورت عرضی بر پوسته وارد شده و معادلات غیرخطی حاکم بر حرکت پوسته استخراج گردیده است. معادلات حاکم، با استفاده از تئوری غیرخطی پوسته‌های نازک دانل-مشتری- ولاسف، با استفاده از تابع تنش ایری به‌صورت دو معادله‌ی کوپل بهدست آمده است. برای حل این دو معادله‌ی کوپل از روش گالرکین غیرخطی استفاده شده و پس از ساده‌سازی، معادله‌ی زمانی به‌دست‌آمده، از روش هموتوپی پرتوربیشن حل گردیده است. با حل این معادله، رزونانس‌ ثانویه مخروط به‌صورت پاسخ فرکانسی بهدست آمده و نمودارهای پاسخ فرکانسی برای رزونانس‌ مافوق ‌هارمونیک رسم و بررسی شده است. درنهایت تأثیر پارامترهای مختلف که شامل تغییر تعداد تقویت‌کننده‌های طولی، تغییر تعداد تقویت‌کننده‌های رینگی، تغییر ضخامت پوسته و تغییر زاویه رأس پوسته مخروطی می‌باشد، مطالعه شد. نتایج تحلیل حاکی از آن است که در سازه مذکور، افزایش تعداد تقویت‌کننده‌های طولی و افزایش ضخامت پوسته، باعث انحراف بیشتر نمودار پاسخ فرکانسی به سمت راست شده که بیانگر صلبیت بیشتر سازه است؛ اما افزایش تعداد تقویت‌کننده‌های رینگی، باعث انحراف بیشتر نمودار پاسخ فرکانسی به سمت چپ گردیده است که بیانگر کاهش سخت‌شوندگی پوسته تقویت‌شده می‌باشد.

کلیدواژه‌ها


[1] Sofiyev AH, Osmancelebioglu E (2017) The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory. Compos B Eng 120:197-211.
[2] Sofiyev AH (2015) On the vibration and stability of shear deformable FGM truncated conical shells subjected to an axial load. Compos B Eng 80: 53-62.
[3] Sofiyev AH, Schnack E (2012) The vibration analysis of FGM truncated conical shells resting on two-parameter elastic foundations. Mech Adv Mater Struc 19(4): 241-249.
[4] Anh VT, Duc ND (2019) Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments. ACTA Mech 230(1): 157-178.
[5] Nguyen PD, Quang VD, Anh VT, Duc ND (2019) Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment. Int J Struct Stab Dy 19(12): 1950158.
[6] Khadem SE, Nezamoleslami R (2017) Investigation of the free vibrations of composite anisogrid lattice conical shells formed by geodesically spiral and circumferential ribs. Int J Appl Mech 9(04): 1750047.
[7] Sofiyev AH (2012) The non-linear vibration of FGM truncated conical shells. Compos Struct 94(7): 2237-2245.
[8] Duc ND, Seung-Eock K, Khoa ND, Chan DQ (2020) Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core. J Sandw Struct Mater 099636220906821.
[9] Duc ND, Seung-Eock K, Chan DQ (2018) Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. J Therm Stresses 41(3): 331-365.
[10] Nezamoleslami R, Khadem SE (2017) Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs. Steel Compos Struct 24(2): 249-264.
[11] Nezamoleslami R, Khadem SE (2017) Analysis of linear vibrational behavior of anisogrid lattice composite conical shells, formed by helical ribs. Mod Mech Eng 17(3): 251-262. (in Persian)
[12] Mamaghani AE, Khadem SE, Bab S (2016) Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn 86(3): 1761-1795.
[13] Mamaghani AE, Khadem SE, Bab S, Pourkiaee SM (2018) Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int J Mech Sci 138: 427-447.
[14] Hosseini R, Hamedi M, Ebrahimi-Mamaghani A, Kim HC, Kim J, Dayou J (2017) Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. Int J Smart Nano Mater 8(2-3): 110-124.
[15] Ebrahimi-Mamaghani A, Sotudeh Gharebagh R, Zarghami R, Mostoufi N (2019)  Dynamics of two-phase flow in vertical pipes. J Fluid Struct 87:150-73.
[16] Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian MT (2020) Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express 6(12): 1250c5.
[17] Sarparast H, Ebrahimi-Mamaghani A. Vibrations of laminated deep curved beams under moving loads. Compos Struct 226: 111262.
[18] Mirtalebi SH, Ebrahimi-Mamaghani A, Ahmadian MT (2019) Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes. IFAC-PapersOnLine 52(10): 382-7.
[19] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2020) Thermo-mechanical stability of axially graded Rayleigh pipes. Mech Based Des Struc 5:1-30.
[20] Ansaryan Y, Jafari A (2017) Investigation of free and forced vibration of a composite circular cylindrical shell with internal fluid. Journal of Solid and Fluid Mechanics 7(2): 93-100. (in Persian)
[21] Ehsani A, Rezaeepazhand J (2015) Effect of grid configuration on buckling and vibration response of composite grid plates. Journal of Solid and Fluid Mechanics 5(3): 93-100. (in Persian)
[22] Hemmati R, Talebitooti M (2019) Effects of boundary conditions, cone angle and core material on free vibration of the joined sandwich conical-conical shell. Journal of Solid and Fluid Mechanics 9(4): 167-180. (in Persian)
[23] Irie T, Yamada G, Kaneko Y (1982) Free vibration of a conical shell with variable thickness. J Sound Vib  82(1): 83-94.
[24] Sankaranarayanan N, Chandrasekaran K, Ramaiyan G (1988) Free vibrations of laminated conical shells of variable thickness. J Sound Vib 123(2): 357-371.
[25] Sivadas KR, Ganesan N (1990) Free vibration of cantilever conical shells with variable thickness. Comput Struct 36(3): 559-566.
[26] Sivadas KR, Ganesan N (1991) Vibration analysis of laminated conical shells with variable thickness. J Sound Vib 148(3): 477-491.
[27] Tong L (1993) Free vibration of composite laminated conical shells. Int J Mech Sci 35(1): 47-61.
[28] Kang JH, Leissa AW (1999) Three-dimensional vibrations of hollow cones and cylinders with linear thickness variations. J Acoust Soc Am 106(2): 74855.
[29] Liew KM, Ng TY, Zhao X (2005) Free vibration analysis of conical shells via the element-free kp-Ritz method. J Sound Vib 281(3-5): 627-645.
[30] Civalek Ö (2007) Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach. J Comput Appl Math 205: 251-271.
[31] Civalek Ö (2013) Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Compos B Eng 45(1):1001-1009.
[32] Civalek O (2007) Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct Eng Mech 25(1): 127-130.
[33] Li FM, Kishimoto K, Huang WH (2009) The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mech Res Commun 36(5): 595-602.
[34] Jin G, Su Z, Ye T, Jia X (2014) Three-dimensional vibration analysis of isotropic and orthotropic conical shells with elastic boundary restraints. Int J Mech Sci 89: 207-221.
[35] Jin G, Ma X, Shi S, Ye T, Liu Z (2014) A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions.  Appl Acoust 85: 82-96.
[36] Nayfeh AH, Mook DT (1979) Nonlinear Oscillations. John Wiley & Sons, New York.
[37] Crenwelge OE, Muster D (1969) Free vibration of ring and stringer stiffened conical shells. J Acoust Soc Am 49: 176-185.
[38] Mecitoglu Z (1996) Vibration characteristics of a stiffened conical shell. J Sound Vib 197: 191-206.
[39] Sofiyev AH (2011) Non-linear buckling behavior of FGM truncated conical shells subjected to axial load. Int J Non Lin Mech 46: 711-719.
[40] Agamirov VL (1990) Dynamic problems of nonlinear shells theory. Nauka, Moscow. (in Russian)
[41] Zhang GQ (1989) Derivation of the governing equations of anisotropic conical shells. Delft University of Technology, Faculty of Aerospace Engineering, Report LR-609, Delft.
[42] Jones  RM (1999) Mechanics of Composite Materials. 2nd edn. Taylor & Francis, Philadelphia.
[43] Subhi Qatu M (2004) Vibration of laminated shells and plates. Elsevier Inc., San Diego.
[44] Liao SJ, Chwang AT (1998) Application of homotopy analysis method in nonlinear oscillations. ASME J Appl Mech 65: 914-922.
[45] He JH (1999) Homotopy perturbation technique. Comput Methods Apple Mech Eng 178: 257-262.
[46] Nayfeh AH (1973) Perturbation methods. Wiley, New York.