[1] صبا نیرو (1387) بررسی علل ترکخوردگی پره توربین بادی 660 کیلوواتی نیروگاه هرزویل، گزارش درونسازمانی.
[2] ترابیزاده م ا (1390) تحلیل رفتار مکانیکی صفحات کامپوزیتی با استفاده از روش تخریب پیشرونده در دماهای پایین. پایاننامه دکتری، دانشگاه علم و صنعت.
[3] Alkhader M, Zhai X, Chiang FP (2017) Experimental investigation of the synergistic effects of moisture and freeze-thaw cycles on carbon fiber vinyl-ester composites. J Compos Mater 52(7): 919-930.
[4] Hancox NL (1998) Thermal effects on polymer matrix composites: Part 1. Thermal cycling. Mater Design 19(3): 85-91.
[5] Rinaldi G, Maura G (1993) Durable glass–epoxy composites cured at low temperatures—Effects of thermal cycling, UV irradiation and wet environment. Polym Int 31(4): 339-345.
[6] Sousa JM, Correia JR, Cabral-Fonseca S, Diogo AC (2014) Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Compos Struct 116(1): 720-731.
[7] Marín L, Gonz_alez EV, Maimí P, Trias D, Camanho PP (2016) Hygrothermal effects on the translaminar fracture toughness of crossply carbon/epoxy laminates: Failure mechanisms. Compos Sci Technol 122(3): 130-139.
[8] Sugiman S, Gozali M, Setyawan PD (2017) Hygrothermal effects of glass fiber reinforced unsaturated polyester resin composites aged in steady and fluctuating consitions. Adv Compos Mater 28(1): 87-102.
[9] Hodzic A, Kim JK, Lowe AE (2004) The effects of water aging on the interphase region and interlaminar fracture toughness in polymer-glass composites. Compos Sci Technol 64(13): 2185-2195.
[10] Ghasemi AR, Moradi M (2016) Low thermal cycling effects on mechanical properties of laminated composite materials. Mech Mater 96(3): 126-137.
[11] Cormier L, Joncas S (2010) Effects of cold temperature, moisture and freeze-thaw cycles on the mechanical properties of unidirectional glass fiber-epoxy composites. 51st AIAA SDM Student Symposium, Orlando, Florida.
[12] Cormier L, Joncas S, Nijssen RPL (2016) Effects of low temoerature on the mechanical properties of glass fiber-epoxy composites: static tension, compression, R=0.1 and R=-1 fatigue of ±45˚ laminates. Wind Energy 19(6): 1023-1041.
[13] Kim MG, Kang SG, Kim CG, Kong CW (2007) Tensile response of graphite/epoxy composites at low temperatures. Compos Struct 79(1): 84-89.
[14] Sanchez-Saez TGRS, Barbero E, Zaera R, Navarro C (2002) Static behavior of GFRPs at low temperatures. Compos Struct 33(5): 383-390.
[15] Kumagai S, Shindo Y, Inamoto A (2005) Tension–tension fatigue behavior of GFRP woven laminates at low temperatures. Cryogenics 45(2): 123-128.
[16] Abdollahi Azghan M, Asghari Arpatappeh F, Eslami-Farsani R (2017) Experimental study of the effect of cryogenic cycling and metal surface treatment on flexural propertiesof aluminum- epoxy/basalt fibers laminate composite. Iranian J Manufact Eng 4(1): 15-24. (in Persian)
[17] Asghari Arpatappeh F, Abdollahi Azghn M, Eslami Farsani R (2020) Effect of cryogenic environmental condition upon flexural properties of aluminum- epoxy/ basalt fibers- glass fibers laminates. J Sci Technol In press. (in Persian)
[18] عابدی م، موسوی ترشیزی س ا، سرفراز ر (2019) بررسی میکروساختاری آسیب ناشی از یخزدگی و سیکلهای سرمایش/گرمایش بر کامپوزیت شیشه/اپوکسی با شیار لبهای. 27امین کنفرانس مهندسی مکانیک، 10 تا 12 اردیبهشت، تهران، ایران.
[19] Franco LAL, Grac MLA, Silva FS (2008) Fractography analysis and fatigue of thermoplastic composite laminates at different environmental conditions. Mater Sci Eng A 488(1): 505–513.
[20] Asp LE (1998) The effects of moister and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58(6): 967-977.
[21] Todo M, Nakamura T, Takahashi K (2000) Effects of moister absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites. J Compos Mater 34(8): 630-648.
[22] Russell SG (2016) A residual strength prediction methodology for composite laminates with surface damage under tensile loading. in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-8 January, San Diego, USA.
[23] Caous D, Bois C, Wahl JC, Palin-Luc T, Valette J (2017) A method to determine composite material residual tensile strength in the fiber direction as a function of the matrix damage state after fatigue loading. Compos B Eng 127(32): 15-25.
[24] Abedi M, Moussavi Torshizi SE, Sarfarz R (2020) Damage mechanisms in glass/epoxy composites subjected to simultaneous humidity and freeze-thaw cycles. J Eng Fail Anal (In Press) https://doi.org/10.1016/j.engfailanal.2020.105041.
[25] Voitkovskii KF (1960) The mechanical properties of Ice. Translated by the American Meteorological Society.
[26] عابدی م، موسوی ترشیزی س ا، علیآبادی آ، سرفراز ر (2019) مشخصهسازی اجزاء محدود توسعه یافته اثر انبساط یخ در ورق کامپوزیتی با شیار لبهای. 27امین کنفرانس مهندسی مکانیک، 10 تا 12 اردیبهشت، تهران، ایران.
[27] Pimenta S, Pinho ST (2014) An analytical model for the translaminar fracture toughness of fiber composites with stochastic quasi-fractal fracture surfaces. J Mech Phys Solids 66(1):78–102.
[28] Almansour FA, Dhakal HN, Zhang ZY (2018) Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Compo Sci Technol 154: 117-127.
[29] ASTM D5045-99 (2007) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. ASTM International, www.astm.org.
[30] Moslemi M, Khoshravan M (2015) Cohesive zone parameters selection for mode-I prediction of interfacial delamination. J Mech Eng 61(9): 507-516.