[1] Simani S, Bonfe M (2004) Modelling and identification of residual generator functions for fault detection and isolation of a small aircraft. 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601).
[2] Chadli M, et al. (2013) H−/H∞ fault detection filter design for discrete-time Takagi–Sugeno fuzzy system. Automatica 49(7): 1996-2005.
[3] Yan K, et al. (2019) Extended state observer-based sliding mode fault-tolerant control for unmanned autonomous helicopter with wind gusts. IET Control Theory A 13(10): 1500-1513.
[4] Bokor J, Balas G (2004) Detection filter design for LPV systems, a geometric approach. Automatica 40(3): 511-518.
[5] Armeni S, Casavola A, Mosca E (2009) Robust fault detection and isolation for LPV systems under a sensitivity constraint. Int J Adapt Control 23(1): 55-72.
[6] De Persis C, Isidori A (2001) A geometric approach to nonlinear fault detection and isolation. IEEE T Automat Contr 46(6): 853-865.
[7] Gauthier JP, Kupka IA (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32(4): 975-994.
[8] رضوی ح، شهبازی و، ملک زاده م (1397) تاثیر وجود مشاهدهگر اغتشاش روی سیستمهای کنترلی با وجود اغتشاش. پنجمین کنفرانس بینالمللی پژوهشهای کاربردی در مهندسی برق، مکانیک و مکاترونیک. انجمن حرارتی برودتی ایران.
[9] عزیزآبادی ج، صدرنیا م، فاتح م (1393) طراحی رویتگر مود لغزشی به منظور تشخیص و جداسازی خطا در سیستم های دینامیکی غیرخطی. پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود.
[10] Staroswiecki M, Comtet-Varga G (2001) Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37(5): 687-699.
[11] Guernez C, et al. (1997) Extension of parity space to non linear polynomial dynamic systems. IFAC Proceedings Volumes 30(18): 857-862.
[12] Frisk E, Åslund J (2005) Lowering orders of derivatives in non-linear residual generation using realization theory. Automatica 41(10): 799-1807.
[13] Sadrnia M, Chen J, Patton R (1997) Robust H∞/μ observer-based residual generation for fault diagnosis. IFAC Proceedings Volumes 30(18): 155-161.
[14] Alcalay G, et al. (2018) An adaptive Extended Kalman Filter for monitoring and estimating key aircraft flight parameters. IFAC-PapersOnLine 51(24): 620-627.
[15] Dong Y (2019) Implementing deep learning for comprehensive aircraft icing and actuator/sensor fault detection/identification. Eng Appl Artif Intel 83: 28-44.
[16] Bateman F, Noura H, Ouladsine M (2011) Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV. IEEE T Aero Elec Sys 47(3): 2119-2137.
[17] Yang Y, Ding SX, Li L (2015) On observer-based fault detection for nonlinear systems. Syst Control Lett 82: 18-25.
[18] Jiang D, et al. (2018) Particle filtering for fault diagnosis in nonlinear plants based on adaptive threshold method. in 2018 37th Chinese Control Conference (CCC).
[19] مرغوبکار عر، صدرنیا م (1395) طراحی و شبیه سازی سیستم تشخیص خطا برای هواپیمای بدون سرنشین مچان، به روش جایابی قطب. دومین کنفرانس بین المللی پژوهش در علوم و مهندسی.
[20] Yu X, Fu Y, Peng X (2017) Fuzzy logic aided fault-tolerant control applied to transport aircraft subject to actuator stuck failures. IEEE T Fuzzy Syst PP(99): 1-1.
[21] Liu Y, et al. (2017) A new fault tolerant strategy for commercial aircraft based on adaptive control. International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC).
[22] Shin JY, Gregory I (2007) Robust gain-scheduled fault tolerant control for a transport aircraft. IEEE International Conference on Control Applications Singapore 1209-1214.
[23] Yu B, Zhang Y (2016) Fault-tolerant control of a boeing 747-100/200 based on a laguerre function-based MPC scheme. IFAC-PapersOnLine 49(17): 58-63.
[24] Richardson TS, et al. (2011) Analysis of the Boeing 747-100 using CEASIOM. Prog Aerosp Sci 47(8): 660-673.
[25] Caliskan F, et al. (2009) Estimation of actuator fault parameters in a nonlinear Boeing 747 model using a linear two-stage Kalman filter. IFAC Proceedings Volumes 42(8): 1408-1413.
[26] Ciubotaru B, et al. (2006) Christophe, fault tolerant control of the Boeing 747 short-period mode using the admissible model matching technique. Zhang, Hong-Yue, in Fault Detection, Supervision and Safety of Technical Processes, Elsevier Science Ltd: Oxford. p. 819-824.
[27] Rosa P, et al. (2015) A mixed-μ approach to the integrated design of an FDI/FTC system applied to a high-fidelity industrial airbus nonlinear simulator. IFAC-PapersOnLine 48(21): 988-993.
[28] Goupil P (2011) AIRBUS state of the art and practices on FDI and FTC in flight control system. Control Eng Pract 19(6): 524-539.
[29] Goupil P (2009) AIRBUS state of the art and practices on FDI and FTC. IFAC Proceedings Volumes 42(8): 564-572.
[30] Zheng F, et al. (2017) Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults. J Syst Eng Electron 28(2):322-377.
[31] Nguyen DT, Saussie D, Saydy L (2017) Quaternion-based robust fault-tolerant control of a quadrotor UAV. International Conference on Unmanned Aircraft Systems (ICUAS).
[32] Castaneda H, et al. (2017) Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans 66: 226-232.
[33] Qi Z, et al. (2016) An active Fault-Tolerant Control method for a low-cost and fixed-wing UAV. IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC).
[34] Yu B, et al. (2015) MPC-based FTC with FDD against actuator faults of UAVs.15th International Conference on Control, Automation and Systems (ICCAS).
[35] Qian M, et al. (2015) Dynamic surface fault tolerant tracking control design for UAV with transient performance. IFAC-PapersOnLine 48(21): 208-213.
[36] Merheb AR, et al. (2015) Fault severity based Integrated Fault Tolerant Controller for quadrotor UAVs. International Conference on Unmanned Aircraft Systems (ICUAS).
[37] Caliskan F Hajiyev C (2015) Reconfigurable control of an UAV against sensor/actuator failures. IFAC-PapersOnLine 48(9): 7-12.
[38] Benrezki RR, et al. (2015) Passive fault tolerant control of quadrotor UAV using a nonlinear PID. IEEE International Conference on Robotics and Biomimetics (ROBIO).
[39] Avram RC, et al. (2015) IMU sensor fault diagnosis and estimation for quadrotor UAVs. IFAC-PapersOnLine 48(21): 380-385.
[40] Qu Q, et al. (2014) Fault tolerant control for UAV with finite-time convergence. 26th Chinese Control and Decision Conference (2014 CCDC).
[41] Zhaohui C, Noura H (2013) A composite Fault Tolerant Control based on fault estimation for quadrotor UAVs. IEEE 8th Conference on Industrial Electronics and Applications (ICIEA).
[42] Xu Q, et al. (2013) Adaptive fault-tolerant control design for UAVs formation flight under actuator faults. International Conference on Unmanned Aircraft Systems (ICUAS).
[43] Péni T, et al. (2013) Supervisory fault tolerant control of the GTM UAV using LPV methods. Conference on Control and Fault-Tolerant Systems (SysTol).
[44] Ducard G (2013) The SMAC Fault Det. and Isolation Scheme: Discussions, improvements, and application to a UAV. Conference on Control and Fault-Tolerant Systems (SysTol).
[45] Rago C, et al. (1998) Failure detection and identification and fault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV. in Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[46] White A, Karimoddini A (2020) Event-based diagnosis of flight maneuvers of a fixed-wing aircraft. Reliab Eng Syst Safe 193: 106609.
[47] Ding S (2003) Model‐based fault diagnosis in dynamic systems using identification techniques. Silvio Simani, Cesare Fantuzzi and Ron J. Patton, Springer: London, 282pp. ISBN 1‐85233‐685‐4.
[48] Chen J, Patton R (1999) Robust model-based fault diagnosis for dynamic systems kluwer academic publishers. Boston, Dordrecht, London.
[49] Ding X, Frank P (1991) Frequency domain approach and threshold selector for robust model-based fault detection and isolation. in Fault Detection, Supervision and Safety for Technical Processes. Elsevier 271-276.
[50] Drew MC, et al. (2020) Multi-objective gust load alleviation control designs for an aeroelastic wind tunnel demonstration wing. AIAA Scitech 2020 Forum, Orlando, FL.
[51] Misra G, Bai X (2019) Robust disturbance observer-based control for relative attitude tracking using sum-of-squares programming. J Guid Control Dynam 1-8.
[52] Yong K, Chen M, Wu Q (2020) Anti-disturbance control for nonlinear systems based on interval observer. IEEE T Ind Electron 67(2): 1261-1269.
[53] صباغی فرشی س، اکبری د (2019) کاربرد روش تداخلسنجی لیزری برشی در بازرسی غیر مخرب و تخمین اندازه عیوب صفحهای. مجله مکانیک سازهها و شارهها 14-1 :(4)9.
[54] Marzat J, et al. (2012) Model-based fault diagnosis for aerospace systems: a survey. P I Mech Eng G-J Aer 226(10): 1329-1360.
[55] Napolitano MR, An Y, BA (2000) Seanor, A fault tolerant flight control system for sensor and actuator failures using neural networks. Aircraft Design 3(2): 103-128.
[56] Hallouzi R, et al. (2006) Model weight estimation for FDI using convex fault models. IFAC Proceedings Volumes 39(13): 795-800.
[57] Lu P, et al. (2016) Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion. Control Eng Pract 57: 126-141.
[58] Liu Z, et al. (2006) Flight control of unpowered flying vehicle based on robust dynamic inversion. 2006 Chinese Control Conference, Harbin.
[59] Wang YC, et al. (2015) A unified approach to nonlinear dynamic inversion control with parameter determination by eigenvalue assignment. Math Probl Eng 2015.
[60] Sun B, Van Kampen EJ (2020) Incremental model-based global dual heuristic programming with explicit analytical calculations applied to flight control. Eng Appl Artif Intel 89: 103425.
[61] Zhang S, Meng Q (2019) An anti-windup INDI fault-tolerant control scheme for flying wing aircraft with actuator faults. ISA T 93: 172-179.
[62] Agrawal A, et al. (2008) An adaptive fuzzy thresholding algorithm for exon prediction. IEEE International Conference on Electro/Information Technology.
[63] Nelson RC (1998) Flight Stability and Automatic Control. McGraw-Hill Education.
[64] ساداتی ح (1395) طراحی سیستم تقویت کننده کنترل هواپیما با استفاده از واروندینامیک و شبکهعصبی. نشریه علمی پژوهشی مهندسی هوانوردی 97-85: (2)18.
[65] Autenrieb J, Shin HS, Bacic M (2019) Development of a neural network-based adaptive nonlinear dynamic inversion controller for a tilt-wing VTOL aircraft. in 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS).