[1] Kakac S, Bergles AE, Mayinger F, Yuncu H (eds) (2013) Heat transfer enhancement of heat exchangers. Springer Science and Business Media 355.
[2] Choi SUS (1995) Enhancing conductivity of fluids with nanoparticles. ASME Fluid Eng, Division 231: 99-105.
[3] Coronel P, Sandeep KP (2008) Heat transfer coefficient in helical heat exchangers under turbulent flow conditions. Int J Food Eng 4(1).
[4] Jayakumar JS, Mahajani SM, Mandal JC, Iyer KN, Vijayan PK (2010) CFD analysis of single-phase flows inside helically coiled tubes. Comput Chem Eng 34(4): 430-446.
[5] Xie H, Li Y, Yu W (2010) Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows. Phys Lett A 374(25): 2566-2568.
[6] Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53(1-3): 12-17.
[7] Narrein K, Mohammed HA (2013) Influence of nanofluids and rotation on helically coiled tube heat exchanger performance. Thermochim Acta 564: 13-23.
[8] امانی ج، عباسیان آرانی ع ا (1393) مطالعه تجربی انتقال حرارت و افت فشار نانوسیال آب-اکسید تیتانیوم. نشریه علمی پژوهشی امیرکبیر 88-79 :(1)46.
[9] Darzi AR, Farhadi M, Sedighi K (2013) Heat transfer and flow characteristics of AL2O3–water nanofluid in a double tube heat exchanger. Int J Heat Mass Transf 47: 105-112.
[10] Kahani M, Heris SZ, Mousavi SM (2013) Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/water nanofluid laminar flow through helical coils. J Dispers Sci Technol 34(12): 1704-1712.
[11] Kahani M, Heris SZ, Mousavi SM (2013) Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils. Powder Technol 246: 82-92.
[12] Aly WI (2014) Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energ Convers Manage 79: 304-316.
[13] Rakhsha M, Akbaridoust F, Abbassi A, Majid SA (2015) Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature. Powder Technol 283: 178-189.
[14] Doshmanziari FI, Zohir AE, Kharvani HR, Jalali-Vahid D, Kadivar MR (2016) Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow. Int J Heat Mass Transf 52(7): 1305-1320.
[15] Mahmoudi M, Tavakoli MR, Mirsoleimani MA, Gholami A, Salimpour MR (2017) Experimental and numerical investigation on forced convection heat transfer and pressure drop in helically coiled pipes using TiO2/water nanofluid. Int J Refrig 74: 627-643.
[16] Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52(25-26): 5792-5795.
[17] Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2): 151-170.
[18] Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19): 3701-3707.
[19] Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4): 571-571.
[20] Wasp E, Kenny J, Gandhi R (1999) S.1.S.P. Transportation, Bulk Materials Handling. Trans Tech Publications, Germany.
[21] Shah RK, Sekulic DP (2003) Fundamentals of heat exchanger design. John Wiley & Sons.
[22] Patil RK, Shende BW, Ghosh PK (1982) Designing a helical-coil heat exchanger. Chem Eng 92(24): 85-88.
[23] Shah RK, Sekulic DP (2003) Fundamentals of heat exchanger design. John Wiley & Sons.
[24] Young Hugh D (1962) Statistical treatment of experimental data.126-132.
[25] Holman JP (1989) Experimental models for engineers. 5th edn. McGraw-Hill, New York.