[1] Ghafurian MM, Niazmand H, Ebrahimnia bejestan E (2018) Performance evaluation of multi-wall carbon nanotube in solar fresh water production. Articles in Press, Amirkabir Journal of Mechanical Engineering, Accepted Manuscript.
[2] Fu Y, Wang G, Mei T, Li T (2017) Accessible graphene aerogel for efficient harvesting solar energy. ACS Sustain Chem Eng 5(6): 4665-4671.
[3] Ghafurian MM, Niazmand H, Ebrahimnia-Bajestan E (2019) Improving steam generation and distilled water production by volumetric solar heating. Appl Therm Eng 158: 113808
[4] Vafaie M, Barzgarnezhad M, Arbabi A, Shakib E, Ghafurian MM (2018) Experimental study and economic evaluation of various techniques for increasing fresh water production in a cascade solar water desalination unit. Articles in Press, Amirkabir Journal of Mechanical Engineering, Accepted Manuscript.
[5] Shakib E, Amidpour M, Ghafurian MM (2017) Investigation of thermoeconomic optimizing single and two objectives of hybrid METVC +RO desalination system of different configurations integrated to gas turbine power plant. Articles in Press, Amirkabir Journal of Mechanical Engineering, Accepted.
[6] Zhang HL, Baeyens J, Degrève J, Cacères J (2013) Concentrated solar power plants: Review and design methodology. Renew Sustain Energ Rev 22(1): 466-481.
[7] Marugán-Cruz C, Sánchez-Delgado S, Rodríguez-Sánchez MR, Venegas M (2014) District cooling using central tower power plant. Energy Procedia 49(1): 1800-1809.
[8] Akbari Z, Ghafurian MM, Niazmand H, Bakhsh Zahmatkesh B (2018) Performance evaluation of multi-wall carbon nanotube in hot water production. In 26th Annual International Conference of Iranian Society of Mechanical Engineers,Semnan, Iran, 24-26 April.
[9] Higgins MW, AR SR, Devarapalli RR, Shelke MV (2018) Carbon fabric based solar steam generation for waste water treatment. Solar Energy 159(1): 800-810.
[10] Neumann O, Feronti C, Neumann AD, Dong A, et al (2013) Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. PNAS 110(29): 11677-11681.
[11] Amjad M, Raza G, Xin Y, Pervaiz S, et al (2017) Volumetric solar heating and steam generation via gold nanofluids. Appl Energy 206(1): 393-400.
[12] Jin H, Lin G, Bai L, Amjad M, et al (2016) Photothermal conversion efficiency of nanofluids: An experimental and numerical study. Solar Energy 139(1): 278-289.
[13] Morciano M, Fasano M, Salomov U, Ventola L, et al (2017) Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci Rep 7(1): Article number: 11970
[14] Zeiny A, Jin H, Lin G, Song P, et al (2018) Solar evaporation via nanofluids: A comparative study. Renewable Energy 122(1): 443-454.
[15] Ghafurian MM, Niazman H, Tavakoli-Dastjerd F, Mahian O (2019) A study on the potential of carbon-based nanomaterials for enhancement of evaporation and water production. Chem Eng Sci 207: 79-90.
[16] Ghafurian MM, Niazmand H, Ebrahimnia-Bajestan E, Elhami Nik H (2018) Localized solar heating via graphene oxide nanofluid for direct steam generation. J Therm Anal Calorim 1-7.
[17] Ni G, Miljkovic N, Ghasemi H, Huang X, et al (2015) Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17(1): 290-301.
[18] Chen BA, Lai BB, Cheng J, Xia GH, et al (2009) Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo. Int J Nanomedicine 4(1): 201-208.
[19] Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int Article ID: 7840161, 32 pages.
[20] Ninjbadgar T, Brougham DF (2011) Epoxy ring opening phase transfer as a general route to water dispersible superparamagnetic Fe3O4 nanoparticles and their application as positive MRI contrast agents. Adv Fund Mater 21(24): 4769-4775.
[21] Li Calzi S, Kent DL, Chang KH, Padgett KR, et al (2009) Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging. Microvasc Res 78(1): 132-139.
[22] Cengelli F, Grzyb JA, Montoro A, Hofmann H, et al (2009) Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. Chem Med Chem 4(6): 988-997
[23] Balivada S, Rachakatla RS, Wang H, Samarakoon TN, et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1): 119-127.
[24] Shen YF, Tang J, Nie ZH, Wang YD, et al (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Tech 68(3): 312-319.
[25] Zeng Y, Wang K, Yao J, Wang H (2014) Hollow carbon beads for significant water evaporation enhancement. Chem Eng Sci 116(1): 704-709.
[26] Shi L, He Y, Huang Y, Jiang B (2017) Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Convers Manag 149(1): 401-408.
[27] Shi L, Huang J, He Y (2017) Recyclable purification-evaporation systems based on Fe3O4@TiO2 nanoparticles. Energy Procedia 142(1): 356-361.
[28] Swinehart DF (1962) The Beer-Lambert law. J Chem Educ 39(7): 335-335.
[29] Wang X, He Y , Cheng G, Shi L, et al (2016) Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers Manag 130(1): 176-183.
[30] Fu Y, Mei T, Wang G, Guo A, et al (2017) Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. App Therm Eng 114(1): 961-968.
[31] Wang Y, He Y, Liu X, Shi L, et al (2017) Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy 157(1): 35-46.
[32] Liu X, Wang X, Huang J, Cheng G, et al (2018) Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid. Appl Energy 220(1): 302-312.
[33] Li H, He Y, Liu Z, Huang Y, et al (2017) Synchronous steam generation and heat collection in a broadband Ag@TiO 2 core–shell nanoparticle-based receiver. Appl Therm Eng 121(1): 617-627.
[34] Hentschke R(2016) On the specific heat capacity enhancement in nanofluids. Naniscale Res Lett 11(1): 88