[1] Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18(1): 31-38.
[2] Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plate. J Appl Mech-T ASME 12: A69-A77.
[3] Donnell LH(1976) Beams, plates and shells. McGraw-Hill, NY.
[4] Levinson M (1980) An accurate, simple theory of the statics and dynamics of elastic plates. Mech Res Commun 7: 343-350.
[5] Ghugal YM,Shimpi RP (2002) A review of refined shear deformation theories for isotropic and anisotropic laminated plates. J Reinf Plast Comp 21: 775-813.
[6] Srinivas S, Joga Rao AK, Rao CV (1969) Flexure of simply supported thick homogeneous and laminated rectangular plates. ZAMM: Zeitschrift fur Angewandte Mathematic und Mchanik 49(8): 449-458.
[7] Srinivas S,Joga Rao CV, Rao AK (1970) An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates. J Sound Vib 12(2): 187-199.
[8] Levy M (1877) Memoire sur la theorie des plaques elastique planes. J Math Pure Appl 30: 219-306.
[9] Stein M, Jegly DC (1987) Effect of transverse shearing on cyclindrical bending, vibration and buckling of laminated plates. AIAA J 25:123-129.
[10] Senjanovic I, Vladimir N, Tomic M) 2013) An advanced theory of moderately plate vibrations. J Sound Vib 332(7): 1868-1880.
[11] Fryba L (1999) Vibration of solids and structures under moving loads. London: Thomas Telford.
[12] Billelo C, Bergman LA, Kuchma D (2004) Experimental investigation of a small-scale bridge model under a moving mass. J Struct Eng-ASCE 130: 799-804.
[13] Esmailzadeh E, Ghorashi M (1995) Vibration analysis of beams traversed by uniform partially distributed moving masses. J Sound Vib 184(1): 9-17
[14] Kiani K, Nikkhoo A, Mehri B (2010) Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method. ACTA Mech Sinica 26: 721-733
[15] Kiani K, Nikkhoo A, Mehri B (2009) Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass. J Vib Acoust 131(5).
[16] Kiani K, Nikkhoo A, Mehri B (2009) Prediction capabilities of classical and shear deformable beam models excited by a moving mass. J Sound Vib 320(3):632-648
[17] Shadnam MR, Mofid M, Akin JE (2001) On the dynamic response of rectangular plate, with moving mass. Thin Wall Struct 39(9): 797-806.
[18] Nikkhoo A, Rofooei FR (2010) Parametric study of the vibration of thin rectangular plates traversed by a moving mass. ACTA Mech Sinica 223: 15-27.
[19] Motahareh N, Nikkhoo A (2015) Inspection of a rectangular plate dynamics under a moving mass with varying velocity utilizing BCOPs. Lat Am J Solids Stru 12(2): 317-332
[20] Vaseghi Amiri J, Nikkhoo A, Davoodi MR, Ebrahimzadeh M (2013) Vibration analysis of a Mindlin elastic plate under a moving mass excitation by expansion method. Thin Wall Struct 62: 53-64.
[21] Chakraverty S (2009) Vibration of plates. CRCPress, NY.
[22] Reddy JN (2006) An introduction to the finite element method. Vol. 2. McGraw-Hill, NY.
[23] Liew KM, Lam KY, Chow ST (1990) Free vibration analysis of rectangular plates using orthogonal plate function. Comput Struct 34(1): 79-85.
[24] Shimpi RP, Patel HG, Arya H (2007) New first–order shear deformation plate theories. J Appl Mech 74: 523-533.
[25] Hosseini Hashemi S, Arsanjani M (2005) Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int J Solids Struct 42(3-4).
[26] Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, Engineering societies monographs. McGraw-Hill, New York.