[1] Dao R, Morgan DE, Kries HH, Bachelder DM (1996) Convective accelerometer and inclinometer. U.S. Patent 5,581,034.
[2] Leung AM, Jones J, Czyzewska E, Chen J, Pascal M (1997) Micromachined accelerometer with no proof mass. In: Electron Devices Meeting, 1997. IEDM'97. Tech Dig Int Electron Devices Meet, Washington, DC, USA.
[3] Milanović V, Bowen E, Zaghloul ME, Tea NH, Suehle JS, Payne B, Gaitan M (2000) Micromachined convective accelerometers in standard integrated circuits technology. Appl Phys Lett 76(4): 508-510.
[4] Luo XB, Li ZX, Guo ZY, Yang YJ (2002) Thermal optimization on micromachined convective accelerometer. Heat Mass Transfer 38(7): 705-712.
[5] Luo XB, Li ZX, Guo ZY, Yang YJ (2003) Study on linearity of a micromachined convective accelerometer. Microelectron Eng 65(1): 87-101.
[6] Mailly F, Martinez A, Giani A, Pascal-Delannoy F, Boyer A (2003) Design of a micromachined thermal accelerometer: thermal simulation and experimental results. Microelectron J 34(4): 275-280.
[7] Liao KM, Chen R, Chou BC (2005) Design of a thermal-bubble-based micromachined accelerometer. In: MEMS, NANO, and Smart Systems, International Conference on (ICMENS).
[8] Liao KM, Chen R, Chou BC (2006) A novel thermal bubblebased micromachined accelerometer. Sens Actuators A 130: 282-289.
[9] Chaehoi A, Mailly F, Latorre L, Nouet P (2006) Experimental and finite-element study of convective accelerometer on CMOS. Sens Actuators A 132(1): 78-84.
[10] Goustouridis D, Kaltsas G, Nassiopoulou AG (2007) A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation. IEEE Sens J 7(7): 983-989.
[11] Mezghani B, Brahim A, Tounsi F, Masmoudi M, Rekik AA, Nouet P (2011) From 2D to 3D FEM simulations of a CMOS MEMS convective accelerometer. In: Microelectronics (ICM), International Conference on.
[12] Dau VT, Dao DV, Sugiyama S (2007) A 2-DOF convective micro accelerometer with a low thermal stress sensing element. Smart Mater Struct 16(6): 2308.
[13] Courteaud J, Crespy N, Combette P, Sorli B, Giani A (2008) Studies and optimization of the frequency response of a micromachined thermal accelerometer. Sens Actuators A 147(1): 75-82.
[14] Lin JM, Lin CH, Lin CH (2015) RFID-Based Thermal Convection Non-Floating Type Accelerometer with Stacking Material for Heater and Thermal Sensors. Appl Mech Mater 764: 1344-1348.
[15] Mukherjee R, Mandal P, Guha PK (2017) Sensitivity improvement of a dual axis thermal accelerometer with modified cavity structure. Microsyst Technol 23(12):5357-63.
[16] Tahmasebipour M, Vafaei A (2017) A Highly Sensitive Three Axis Piezoelectric Microaccelerometer for High Bandwidth Applications. Micro Nanosyst 9(2):111-120.
[17] Streeter VL, Wylie EB, Bedford KW (1998) Fluid mechanics. McGraw-Hill, New York.
[18] Drazin PG, Riley N (2006) The Navier-Stokes equations: a classification of flows and exact solutions. Cambridge University Press.
[19] Temam R (2001) Navier-Stokes equations: theory and numerical analysis. American Mathematical Soc..
[20] Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proceedings of the IEEE 86(8): 1552-1574.
[21] Tahmasebipour G, Hojjat Y, Ahmadi V, Abdullah A (2009) Optimization of STM/FIM nanotip aspect ratio based on the Taguchi method. Int J Adv Manuf Technol 44(1): 80-90.
[22] Taguchi G, Chowdhury S, Wu Y (2005) Taguchi's quality engineering handbook. Hoboken, NJ: John Wiley & Sons.
[23] Garraud A, Giani A, Combette P, Charlot B, Richard M (2011) A dual axis CMOS micromachined convective thermal accelerometer. Sens Actuators A 170(1-2): 44-50.
[24] Cai SL, Zhu R, Ding HG, Yang YJ, Su Y (2013) A micromachined integrated gyroscope and accelerometer based on gas thermal expansion. In: Solid-State Sensors, Actuators and Microsystems 2013 (Transducers & Eurosensors XXVII).