[1] Dwivedi VK, Tiwari GN (2010) Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination 250(1): 49-55.
[2]SampathkumarK, Arjunan TV, Pitchandi P, Senthilkumar P (2010) Active solar distillation-A detailed review. Renewable Sustainable Energy Rev 14(6): 1503-1526.
[3] Esfahani JA, Rahbar N, Lavvaf M (2011) Utilization of thermoelectric cooling in a portable active solar still-An experimental study on winter days. Desalination 269(1): 198-205.
[4] Morad MM, El-Maghawry HA, Wasfy KI (2015) Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 373: 1-9.
[5] Velmurugan V, Deenadayalan CK, Vinod H, Srithar K (2008) Desalination of effluent using fin type solarstill. Energy 33(11): 1719-1727.
[6] Kabeel AE, Abdelgaied M (2016) Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination 383: 22-28.
[7] Sahota L, Tiwari GN (2016) Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 130: 260-272.
[8] Rajaseenivasan T, Srithar K (2016) Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination 380: 66-74.
[9] کریمی پور آ، تیموری ح، افرند م (1393) شبیه سازی انتقال حرارت جابجایی توام آزاد و اجباری در یک محفظه شیبدار با درپوش متحرک با استفاده از روش شبکهی بولتزمن. مجله علمی پژوهشی مکانیک سازهها و شارهها 182- 167 :(2)4.
[10] علوی ن، ارمغانی ط، ایزد پناه الف (1395) انتقال حرارت جابجایی آزاد نانوسیال در محفظه L شکل بافلدار. مجله علمی پژوهشی مکانیک سازهها و شارهها 321-311 :(3)6.
[11] Omri A, Orfi J, Nasrallah SB (2005) Natural convection effects in solar stills.Desalination 183(1-3): 173-178.
[12] Rahbar N, Esfahani JA (2012) Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study. Desalin Water Treat 50(1-3): 387-396.
[13] Rahbar N, Esfahani JA (2013) Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy 49: 289-297.
[14] Jahanshahi Javaran E, Khani AH, Mohammadi SMH (2016) Manufacturing and simulation of a solar humidification-dehumidificaاtion desalination system, Modares Mechanical Engineering 16(12): 248-239. (In Persian)
[15] Banakar A, Motevali A, Montazeri M, Mousavi Seyedi SR (2016) Comparison of dynamic and static neural networks in predicting performance of parabolic solar desalination. Modares Mechanical Engineering 16(12): 291-299. (In Persian)
[16] Amirahmadi S, Rashidi S, Esfahani JA (2016) Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners. Appl Therm Eng 107: 533-543.
[17] زحمتکش الف (1393) تولید آنتروپی نانوسیالات در همرفت طبیعی در محفظههای متخلخل مستطیل شکل. مجله علمی پژوهشی مکانیک سازهها و شارهها 184-171 :(3)4.
[18] Milani Shirvan K, Mamourian M (2015) Numerical investigation of effect and optimization of square cavity inclination angle and magnetic field on heat transfer and entropy generation. Modares Mechanical Engineering 15(8): 93-104. (In Persian)
[19] Clark JA (1990) The steady state performance of a solar still. Solar Energy 44(1): 43-49.
[20] Magherbi M, Abbassi H, Hidouri N, Brahim, AB (2006) second law analysis in convective heat and mass transfer. Entropy 8(1): 1-17.
[21] Bashi M, Rashidi S, Esfahani JA (2017) Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl Therm Eng 110: 1448-1461.
[22] Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York.
[23] Rashidi S, Esfahani JA, Rahbar N (2017) Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis. Solar Energy 153: 41-50.
[24] Shawaqfeh AT, Farid MM (1995) New development in the theory of heat and mass transfer in solar stills. Solar Energy 55(6): 527-535.