طراحی کنترل‌کننده مُد لغزشی فازی تطبیقی برای کنترل موقعیت و زوایای یک بالگرد چهارملخه

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، گروه مهندسی برق، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران

2 دانشیار، دانشکده مهندسی برق، دانشگاه هوایی شهید ستاری، تهران، ایران

3 استادیار، گروه مهندسی برق، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این مقاله، یک کنترل‌‌کننده مُد لغزشی فازی تطبیقی برای کنترل موقعیت و زوایای یک بالگرد چهارملخه پیشنهاد شده است. ابتدا، مدل دینامیکی بالگرد چهارملخه به دو زیرسیستم تحریک کامل و فروتحریک تقسیم شده است. در زیرسیستم تحریک کامل از ترکیب خطای ردیابی موقعیت و سرعت یکی از متغیرهای حالت در تعریف سطح لغزش استفاده شده است و در نتیجه سطح لغزش زیرسیستم تحریک کامل دارای دو ضریب مجهول می‌باشد. در صورتی که سطح لغزش در زیرسیستم فروتحریک از ترکیب خطی خطای ردیابی موقعیت و سرعت دو متغیر حالت تشکیل شده و در نتیجه، دارای چهار ضریب مجهول می‌باشد. در این مقاله، به منظور به دست آوردن ضرایب غیرخطی سطح سوئیچینگ از روش پایداری هارویتز استفاده شده است. اثبات ریاضی نشان می‌دهد که سیستم حلقه بسته در حضور عدم‌قطعیت‌های ساختاری و غیرساختاری، دارای پایداری مجانبی سراسری است. در ادامه برای از بین بردن پدیده نامطلوب زیگزاگ‌ در ورودی کنترل، از یک تقریب‌گر فازی تطبیقی استفاده شده است. برای بررسی عملکرد کنترل پیشنهادی، شبیه‌سازی‌هایی در دو مرحله بر روی یک بالگرد چهارملخه انجام شده است. نتایج این شبیه‌سازی‌ها، کارایی روش کنترلی پیشنهاد شده را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


[1] Bouchoucha M, Seghour S, Tadjine M (2011) Classical and second order sliding mode control solution to an attitude stabilization of afour rotors helicopter: from theory to experiment. Istanbul, Turkey.
[2] R. Xu, Özgüner Ü (2008) Sliding mode control of a class of under actuated systems. Automatica 44: 233-241.
[3] Besnard L, Shtessel YB, Landrum B (2012) Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J Franklin Inst 349(2): 658-684.
[4] Coza C, Nicol C, Macnab CJB, Ramirez-Serrano A (2011) Adaptive fuzzy control for a quadrotor helicopter robust to wind buffeting. J Intell Fuzzy Sys 2(5-6): 267-283.
[5] Eker İ (2010) Second-order sliding mode control with experimental application. ISA Trans 49(3): 394-405.
[6] Mondal S, Mahanta C (2012) A fast converging robust controller using adaptive second order sliding mode. ISA Trans 51(6): 713-721.
[7] Guo Z, Xu J, Lee TH (2014) Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum. J Franklin Inst 351(4): 2261-2282.
[8] Ashrafiuon H, Erwin RS (2008) Slidingmode control of under actuated multi body systems and its application to shape change control. Int J Control 81(12): 1849-1858.
[9] Xiong JJ, Zheng EH (2014) Position and attitude tracking control for a quadrotor UAV. ISA Trans 53(3): 725-731.
[10] Raffo GV, Ortega MG, Rubio FR (2010) An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica 46(1): 29-39.
[11] Olfati-Saber R (2001) Nonlinear control of under actuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. Thesis Mass Inst.
[12] Raffo GV, Ortega MG, Rubio FR (2008) Back stepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle. in Control Conference, American.
[13] داودی ا، رضایی م (1393) مدل‌سازی دینامیکی، شبیه‌سازی و کنترل یک کوادروتور با استفاده از داده‌های آزمایشگاهی سنسورهای MEMS. مجله مهندسی مکانیک مدرس      184- 176 :(3)14.
[14] Prouty RW (2001) Helicopter performance stability and control. Krieger Publishing Company.
[15] Daewon L, JKH (2009) Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter. Int J Control Autom Sys 7(3): 419-428.
[16] Rong UOXU (2008) Sliding mode control of a class of underactuated systems. Automatica 44: 233-241.
[17] Zheng EH, Xiong JJ, Luo JL (2014) Second order slidingmode control for a quadrotor UAV. ISA Trans 53(4): 1350-1356.
[18] Soltanpour MR, Zolfaghari B, Soltani M, Khooban MH (2013) Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int J Innov Comput Info Control 9(7) 2713-2726.
[19] Niknam T, Khooban MH, Soltanpour MR (2014) An optimal type II fuzzy sliding mode control design for a class of nonlinear systems.  Nonlinear Dyn 75(1-2): 73-83.
[20] Soltanpour MR, Khooban MH, Khalghani MR (2014) An optimal and intelligent control strategy for a class of nonlinear systems: Adaptive fuzzy sliding mode. J Vib Control 22(1): 159-175.
[21] Soltanpour MR, Otadolajam P, Khooban MH (2014) A new and robust control strategy for electrically driven robot manipulators: Adaptive fuzzy sliding mode. IET Sci Meas Technol 9(3): 322-334.
[22] Veysi M, Soltanpour MR (2017) Voltage-base control of robot manipulator using adaptive fuzzy sliding mode control. Int J Fuzzy Sys 19(5): 1430-1443.
[23]  Veysi M, Soltanpour MR, Khooban MH (2015) A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 33(10): 2045-2064.
[23] Muñoza F, González-Hernándezc I, Salazarc S, Espinozaa ES, Lozanoc R (2017) Second order sliding mode controllers for altitude control of a quadrotor UAS: Real-time implementation in outdoor environments. Neurocomputing (233): 61-71.
[24] Khan Q, Akmeliawati R, IqbalBhatti A, AshrafKhan M (2017) Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach. ISA Trans (66) 241-248.
[25] Bambang S, Naoki U, Shigenori S (2017) Generalized super-twisting sliding mode control with a nonlinear sliding surface for robust and energy-efficient controller of a quad-rotor helicopter. Mech Eng Sci 231(11): 2042-2053.
[26] Farid G, Hongwei M, Ali SM, Liwei Q (2017) A review on linear and nonlinear control Techniques for position and attitude control of a quadrotor. Control Intell Syst 45(1).
[27] Han JH, Feng YM, Peng F, Dong W, Sheng XJ (2017) Attitude and position control of quadrotor UAV using PD-fuzzy sliding mode control. in Springer 563-575.
[28] Zou Y (2016) Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. Int J Robust Nonlinear Control.