[1] Pentzer J, Brennan S, Reichard K (2014) On-Line estimation of vehicle motion and power model parameters for skid-steer robot energy use prediction. American Control Conference (ACC) Portland, 2786-2791.
[2] Pazderski D, Kozlowski K, Lawniczak M (2004) Practical stabilization of 4WD skid steering mobile robot. Proc. of the Fourth International Workshop on Robot Motion and Control, Puszczykowo, 175-180.
[3] Van der molen GM (1994) Modeling and control of a wheeled mobile robot. Control Eng Pract 2(1): 287-292.
[4] Takeuehi T, Nagia Y, Enomoto N (1988) Fuzzy control of a mobile robot for obstacle avoidance. Inf Sci 45(2): 231-248.
[5] Leroquais W, d’Andréa-Novel B (1999) Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: The unicycle case. Eur J Control 5(2-4): 293-311.
[6] Dixon WE, Jiang ZP, Dawson DM (2000) Global exponential set point of wheeled mobile robots: A lyapunov approach. Automatica 36(11): 1741-1746.
[7] Wu SF, Mei JS, Niu PY (2001) Path guidance and control of a guided wheeled mobile robot Control Eng Pract 9(19): 97-105.
[8] Sun S (2005) Designing approach on trajectory-tracking control of mobile robot. Rob Comput Integr Manuf 21(1): 81-85.
[9] Rehman FU, Ahmed MM (2007) Steering control algorithm for a class of wheeled mobile robots. IET Control Theory Appl 1(4): 915-924.
[10] Aylett R (2002) Robots: Bringing intelligent machines to life. Barrons’s Educational Inc., USA.
[11] Hemami A, Mehrabi MG, Cheng RM (1992) Synthesis for an optimal low for path tracking in mobile robots. Automatica 28(2): 383-387.
[12] Makimoto T, Sakai Y (2003) Evolution of low power electronics and its future applications. Proc. of the Int. on Low Power Electronics and Design, Seoul, 2-5.
[13] Spangelo I, Egeland O (1992) Generation of energy-optimal trajectories for an autonomous underwater vehicle. Proc. the IEEE Int. on Robotics and Automation 2107-2112.
[14] Trzynadlowski AM (1988) Energy optimization of a certain of incremental motion DC drives. IEEE Trans Ind Electron 35(1): 60-66.
[15] Wang Y, Chen C, Sung C (2013) Design of a weighted-pendulum type electromagnetic generator for harvesting energy from a rotating wheel. IEEE ASME Trans Mechatron 18(2): 754-763.
[16] Barili A, Ceresa M, Parisi C (1995) Energy-saving motion for an autonomous mobile robot. Proc. of the IEEE Int. on Industrial Electronics, Athens, 674-676.
[17] Weigui W, Huitang C, Peng-Yung W (1999) Optimal Motion planning for a wheeled mobile robot. Proc. of the IEEE Int. on Robotics and Automation, Detroit, 41-46.
[18] Kim CH, Kim BK (2007) Minimum-energy translational trajectory generation for differential-driven wheeled mobile robots. J Intell Robot Syst 49(4): 367-383.
[19] Duleba I, Sasiadek JZ (2003) Nonholonomic motion planning based on newton algorithm with energy optimization. IEEE Trans Control Syst Technol 11(3): 355-363.
[20] Yang J, Qu Z, Wang J, Conrad K (2010) Comparison of optimal solutions to real-time path planning for a mobile vehicle. IEEE Trans Syst Man Cybern Pt A Syst Humans 40(4): 721-731.
[21] Pei SC, Horng JH (1998) Finding the optimal driving path of a car using the modified constrained distance transformation. IEEE Trans Rob Autom 14(5):663-670.
[22] Kim H, Kim BK (2014) Online minimum–energy trajectory planning and a straight–line path for three-wheeled omnidirectional mobile robots. IEEE Trans Ind Electron 61(9): 4771-4779.
[23] Liu S, Sun D (2014) Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE ASME Trans Mechatron 19(2): 401-411.
[24] Azimirad V, Shorakaei H (2014) Dual-hierarchical genetic–optimal: A new global path planning method for robots. J Manuf Syst 33(1): 139-148.
[25] Mushi SE, Lin Z, Allaire PE (2014) Design, construction, and modeling of a flexible rotor active magnetic bearing rig. IEEE ASME Trans Mechatron 17(6): 1170-1182.
[26] Kim H, Kim BK (2008) Minimum-energy translational trajectory planning for battery-powered three-wheeled omni-directional mobile robots. 10th Int. Conference on Control, Automation, Robotics and Vision, 1730-1735.
[27] Mei Y, Lu Y, Lee C, Hu Y (2006) Energy-efficient mobile robot exploration. Proc. IEEE Int. Conf. on Robotics and Automation, 505-511.
[28] Yi J, Wang H, Zhang J, Song D, Jayasuriya S, Liu J (2009) Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Trans Robot 25(5): 1087-1097.
[29] Wang H, Li B, Liu J, Yang Y, Zhang Y (2011) Dynamic modeling and analysis of wheel skid steered mobile robots with the different angular velocities of four wheels. 30th Chinese Control Conference (CCC), 3919-3942.
[30] Kozlowski K, Pazderski D, Rudas I, Tar J (2004) Modeling and control of a 4-wheel skid-steering mobile robot: From theory to practice. Int J Appl Math Comput Sci 14(4): 477-496.
[31] Wang D, Low C (2008) Modeling and analysis of skidding and slipping in wheeled mobile robots; Design and perspective. IEEE Trans Robot 24(3): 676-687.
[32] نراقی م، شکوهی دولتآبادی ن (۱۳۸۴) سینماتیک و کنترل یک ربات سیار چهار چرخ فرمانش لغزشی در تعقیب مسیر هندسی. سیزدهمین کنفرانس سالانه مهندسی مکانیک، اصفهان، دانشگاه صنعتی اصفهان.
[33] نظری و، نراقی م (1388) کنترل فازی-تطبیقی یک ربات سیار فرمانش لغزشی برای دنبال کردن مسیر. هفدهمین کنفرانس سالانه مهندسی مکانیک (ISME 2009)، تهران، دانشگاه تهران.
[34] محمدپور ا، نراقی م (1389) پایدارسازی مقاوم رباتهای سیار فرمانش لغزشی با در نظر گرفتن اثرات لغزش چرخها. نشریه پژوهشی مهندسی مکانیک ایران 28-6 :(2)12.