[1] Rack ML (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621-1639.
[2] Sibly TF, Unsworth A (1991) Wear of cross-linked polyethylene against itself: a material suitable for surface replacement of the finger joint. J Biomed Eng 13(3): 217-220.
[3] Fagan MJ (1986) Material selection in the design of the femoral component of cemented total hip replacements. Clin Mater 1(3): 151-167.
[4] El-Sheikh HF, Mac Donald BJ , Hashmi MSJ (2002) Material selection in the design of the femoral component of cemented total hip replacement. J Mater Process Technol 122(2-3): 309-317.
[5] Taksali S, Grauer JN, A. Vaccaro R (2004) Material considerations for intervertebral disc replacement implants. The Spine J 4(6): 231-238.
[6] Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf B: Biointerfaces 39(3): 133-142.
[7] Bahraminasab M, Jahan A (2011) Material selection for femoral component of total knee replacement using comprehensive VIKOR. Mater & Des 32(8–9): 4471-4477.
[8] Fallahnezhad K, Farhoudi H, Oskouei R H, Taylor M (2016) Influence of geometry and materials on the axial and torsional strength of the head–neck taper junction in modular hip replacements: A finite element study. J Mech Behav Biomed Mater 60:118-126.
[9] Rubel H, Marschke D, Tautz J, Micheel G (1989) Inconel X-750 as material for core internals and core components - Status of in-service experience and replacements at siemens kwu group. Nucl Eng Des 112: 329-336.
[10] Anwar R , Vermol VV, Rahman S, Hassan OHR , Dung TW (2014) Reformulating Local Ceramic Stoneware with Alumina as Replacement Material for the Heat Sink. JAH 31: 507-516.
[11] Groover MP (2010) Fundamentals of modern manufacturing: materials, processes and systems. 4rd edn., Wiley, New York.
[12] Huang B, Zhang J, Wu Q (2017) Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire. Nucl Mater 490: 115-124.
[13] Vidyarthy RS, Kulkarni A, Dwivedi DK (2017) Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Mater Sci Eng A 695: 249-257.
[14] Wang G, Li Q, Li YJ, Wu AP, Ma NX, Yan DY, Wu HQ (2017) Effects of weld reinforcement on tensile behavior and mechanical properties of 2219-T87 aluminum alloy TIG welded joints. TNMSC 27: 10-16.
[15] Donachi MJ, Donachi SJ (2002) Superalloys a technical guide. 2re edn., ASM International, Materials Park, Ohio.
[16] Bradly EF (1998) A technical guide of superalloys. ASM International, Materials Park, Ohio.
[17] Charre MD (1997) The microstructure of superalloys. Clima Molybdenium Co. Sym., Zurikh.
[18] Marriott JB, Merz M, Nihoul J, Ward IM (1987) High temperature alloys, Springer, New York.
[19] Betteridge W, Shaw SWK (1987) Development of superalloys. Mater sci technol 3(9): 682-694.
[20] Decker RF, Smits CT (1972) The Metallurgy of nickel base superalloys. Paul D. Merica Research laboratory, New York.
[21] Smits CT (1984) A history of superalloy metallurgy for superalloy metallurgist. The metallurgical society of AIME, Warrendale.
[22] Villars P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams, ASM International, Materials Park, Ohio.
[23] Zhang Li, Gobbi SL, Richter KH (1997) Autegenous welding of Hastelloy X to MAR-M247 by laser. J Mater Process Technol 70:285-292.