[1] Alinia M, Ganji DD, Gorji-Bandpy M (2011) Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model. Int J Heat Mass Transf 38(10): 1428-1435.
[2] Nasrin R (2011) Rayleigh and Prandtl number effects on free and forced magnetoconvection in a lid driven enclosure with wavy bottom wall. Int J Energ and Tech 3(23): 1-8.
[3] Fereidoon A, Saedodin S, Hemmat Esfe M, Noroozi MJ (2013) Evaluation of mixed convection in inclined square lid-driven cavity filled with Al2O3/water nano-fluid. Eng Appl Comp Fluid Mech 7(1): 55-65.
[4] Zheng GF, Ha MY, Yoon HS, Park YG (2013) A numerical study on mixed convection in a lid-driven cavity with a circular cylinder. J Mech Sci Tech 27(1): 273-286.
[5] Jeng TM, Tzeng SC (2008) Heat transfer in a lid-driven enclosure filled with water-saturated aluminum foams. Numer. Heat Trans A 54(2): 178-196.
[6] Ghasemi B, Aminossadati SM (2008) Comparison of mixed convection in a square cavity with an oscillating versus a constant velocity wall. Numer Heat Trans A 54(7): 726-743.
[7] Sharif MAR (2007) Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl Therm Eng 27(5): 1036-1042.
[8] Wong JCF (2007) Numerical simulation of two-dimensional laminar mixed-convection in a lid-driven cavity using the mixed finite element consistent splitting scheme. Int J Numer Method Heat Fluid Flow 17(1): 46-93.
[9] Luo WJ, Yang RJ (2007) Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity. Int J Heat Mass Trans 50(11): 2394-2405.
[10] Khanafer KM, Al-Amiri AM, Pop I (2007) Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid. European J Mech B 26(5): 669-687.
[11] Oztop HF, Dagtekin I (2004) Mixed convection in two-sided lid-driven differentially heated square cavity. Int J Heat Mass Trans 47(8): 1761-1769.
[12] Shankar PN, Deshpande MD (2000) Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 32(1): 93-136.
[13] Yang OAWJ (2000) Mixed convection in cavities with a locally heated lower wall and moving sidewalls. Numer. Heat Trans A 37(7): 695-710.
[14] Aydm O (1999) Aiding and opposing mechanisms of mixed convection in a shear-and buoyancy-driven cavity. Int Commun Heat Mass Trans 26(7): 1019-1028.
[15] Mohamad AA, Viskanta R (1995) Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. Appl Math Model 19(8): 465-472.
[16] Mergui S (1993) Caracte´risation expe´rimentale des e´coulements d’air de convection naturelle et mixte dans une cavite´ ferme´e, the`se de l’Universite´ de Poitiers, France.
[17] Chen WZQ (2000) Large eddy simulation of natural and mixed convection airflow indoors with two simple filtered dynamic subgrid scale models. Numer Heat Trans A 37(5): 447-463.
[18] Zhang Z, Zhang W, Zhai ZJ, Chen QY (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—Comparison with experimental data from literature. Hvac&R Research 13(6): 871-886.
[19] Blay D, Mergui S, Niculae C (1993) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. ASME-PUBLICATIONS-HTD 213: 65-65.
[20] Blay D, Mergui S, Tuhault JL, Penot F (1993) Experimental turbulent mixed convection created by confined buoyant wall jets. In: First Eur Heat Trans Conf UK 821–828.
[21] Xu W, Chen Q (2001) A two-layer turbulence model for simulating indoor airflow: Part I. Model development. Ener Build 33(6): 613-625.
[22] Ezzouhri R, Joubert P, Penot F, Mergui S (2009) Large Eddy simulation of turbulent mixed convection in a 3D ventilated cavity: Comparison with existing data. Int J Therm Sci 48(11): 2017-2024.
[23] Berkooz G, Holmes P, Lumley JL (1991) Intermittent dynamics in simple models of the turbulent wall layer. J Fluid Mech 230: 75-95.
[24] Sirovich L (1987) Turbulence and the dynamics of coherent structures part I: coherent structures. Q Appl Math 45(3): 561-571.
[25] Alfonsi G, Primavera L (2007) The structure of turbulent boundary layers in the wall region of plane channel flow. Proc Royal Soci London A: Math Phys Eng Sci 463, 2078, 593-612.
[26] Wang Y, Yu B, Wu X, Wei J, Li F, Kawaguchi Y (2011) POD study on the mechanism of turbulent drag reduction and heat transfer reduction based on Direct Numerical Simulation. Prog Comput Fluid Dyn 11(3-4): 149-159.
[27] Yang JC, LiF C, Cai WH, Zhang HN, Yu B (2014) On the mechanism of convective heat transfer enhancement in a turbulent flow of nanofluid investigated by DNS and analyses of POD and FSP. Int J Heat Mass Trans 78: 277-288.
[28] Motlagh SY, Taghizadeh S (2016) POD analysis of low Reynolds turbulent porous channel flow. Int J Heat Fluid Flow 61: 665-676.
[29] موسائی ا (2014) مطالعه ساختمانهای گردابهای در جریان آشفته کانال حاوی میکروفیبر با استفاده از شبیه سازی مستقیم عددی. مهندسی مکانیک مدرس 93-85 :(3)14.
[30] بازدیدی تهرانی ف، موسوی س م، جدید م (2015)تحلیل خنککاری لایهای لبه جلویی پره توربین مدل توسط دو رهیافت DES و .LES مهندسی مکانیک مدرس 2780-260 :(8)15.
[31] رضائی م، مغربی م (2015) مطالعه ی عددی انتقال حرارت جابهجایی طبیعی مزدوج در محفظه ی بسته متخلخل به روش شبکه بولتزمن. مکانیک سازهها و شارهها 231-217 :(2)5.
[32] علوی ن، ارمغانی ط، ایزد پناه ب (2016) انتقال حرارت جابجایی آزاد نانوسیال در محفظه L شکل بافلدار. مکانیک سازهها و شارهها 321-311 :(3)6.
[33] Wei Z, Zang B, New TH, Cui YD (2016) A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles. Ocean Eng 121: 356-368.
[34] Gomez-Ramirez D, Ekkad SV, Moon HK, Kim Y, Srinivasan R (2017) Isothermal coherent structures and turbulent flow produced by a gas turbine combustor lean pre-mixed swirl fuel nozzle. Exp Therm Fluid Sci 81: 187-201.
[35] Elhimer M, Harran G, Hoarau Y, Cazin S, Marchal M, Braza M (2016) Coherent and turbulent processes in the bistable regime around a tandem of cylinders including reattached flow dynamics by means of high-speed PIV. J Fluid Struc 60: 62-79.
[36] Mahapatra PS, Chatterjee S, Mukhopadhyay A, Manna NK, Ghosh K (2016) Proper orthogonal decomposition of thermally-induced flow structure in an enclosure with alternately active localized heat sources. Int J Heat Mass Trans 94: 373-379.
[37] Maurice G, Thiesset F, Halter F, Mazellier N, Chauveau C, Gökalp I, Kourta A (2016) Scale analysis of the flame front in premixed combustion using Proper Orthogonal Decomposition. Exp Therm Fluid Sci 73: 109-114.
[38] Kaffel A, Moureh J, Harion JL, Russeil S (2016) TR-PIV measurements and POD analysis of the plane wall jet subjected to lateral perturbation. Exp Therm Fluid Sci 77: 71-90.
[39] Sarkar S, Ganguly S, Biswas G, Saha P (2016) Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder. Comput Fluids 127: 47-64.
[40] Villegas A, Diez FJ (2016) Effect of vortex shedding in unsteady aerodynamic forces for a low Reynolds number stationary wing at low angle of attack. J Fluid Struc 64:138-148.
[41] Saha P, Biswas G, Mandal AC, Sarkar S (2017) Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators. Int J Heat Mass Trans 104: 178-198.
[42] Lengani D, Simoni D, Ubaldi M, Zunino P, Bertini F (2017) Analysis of the Reynolds stress component production in a laminar separation bubble. Int J Heat Fluid Flow 64: 112-119.
[43] Chen X, Xia H (2017) A hybrid LES-RANS study on square cylinder unsteady heat transfer. Int J Heat Mass Trans 108: 1237-1254.
[44] Lengani D, Simoni D, Ubaldi M, Zunino P, Bertini F (2017) Experimental study of free-stream turbulence induced transition in an adverse pressure gradient. Exp Therm Fluid Sci 84: 18-27.
[45] Bisoi M, Das MK, Roy S, Patel DK (2017) Large eddy simulation of three-dimensional plane turbulent free jet flow. Euro J Mech B.
[46] Sirovich L, Ball KS, Handler RA (1991) Propagating structures in wall-bounded turbulent flows. Theor Comput Fluid Dyn 2(5-6): 307-317.
[47] Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid‐scale eddy viscosity model. Physics Fluid A: Fluid Dynamic (1989-1993) 3(7): 1760-1765.