[1] Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652: 325-352.
[2] Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A 406: 268–273.
[3] Bridgman PW (1935) Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev 48: 825-847.
[4] Pippan R (2009) High‐Pressure Torsion – Features and Applications. In: Zehetbauer MJ and Zhu YT (eds) Bulk Nanostructured Materials. Weinheim, Germany, Wiley VCH. 217–233.
[5] Edalati K (2025) Review of Advances in High-Pressure Torsion of Titanium and Ti-Based Materials (Alloys, Intermetallics, Oxides and High-Entropy Compounds). Mater Trans 65(5): 464-478.
[6] Beygelzimer Y, Estrin Y, Kulagin R (2023) Some Unresolved Problems of High-Pressure Torsion. Mater Trans 68(8): 1856–1865.
[7] Gunderov DV, Asfandiyarov RN, Astanin VV, Sharafutdinov AV (2023) Slippage during High-Pressure Torsion: Accumulative High-Pressure Torsion—Overview of the Latest Results. Metals 13(8): 1340.
[8] Edalati K (2019) Metallurgical Alchemy by Ultra-Severe Plastic Deformation via High-Pressure Torsion Process. Mater Trans 60(7): 1221-1229.
[9] Borodachenkova M, Wen W, Pereira AM de B (2017) High‐Pressure Torsion: Experiments and Modeling. In: Cabibbo M (ed) Severe Plastic Deformation Techniques. InTech. Available at: http://dx.doi.org/10.5772/intechopen.69173.
[10] Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 53(6): 893-897.
[11] Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Advantages and limitations of HPT: a review. Mater Sci Forum 584-586: 16-21.
[12] Reis LM, Hohenwarter A, Kawasaki M, Figueiredo RB (2024). Evaluating High-Pressure Torsion Scale-Up. Adv Eng Mater 26(19): 2400175.
]13[ قائمی خیاوی س، عمادالدین ا (1395) رفتار تغییر شکل پلاستیک دیسک های آلیاژ آلومینیوم 5452 تحت فرایند پیچش فشار بالای مقید نشده و تأثیر پارامترهای دور و فشارهای اعمالی بر شعاع بحرانی آنها. مجله مهندسی ساخت و تولید ایران دوره 3(3): 40-47.
]14[ کوهدار ح (1400) بررسی ریزساختار و رفتار سودوالاستیک در آلیاژ Fe-10Ni-7Mn (wt.%) قبل و بعد از اعمال فرایند پیچش تحت فشار بالا. مهندسی متالورژی 24(3): 216-227.
[15] Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2012) Analysis of plastic flow during high-pressure torsion. J Mater Sci 47: 7807–7814.
[16] Zhilyaev AP, McNelley TR, Langdon TG (2007) Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. J Mater Sci 42:1517.
[17] Halloumi A, Busquet M, Descartes S (2014) Parametric study of unconstrained high-pressure torsion- Finite element analysis. IOP Conf Ser: Mater Sci Eng 63: 012036.
[18] Hosford WF, Caddell RM (2011) Metal Forming: Mechanics and Metallurgy, 4th edition. Cambridge University Press, New York.
]19[ اسدی خانوکی مت (1399) تأثیر دما و نرخ کرنش بر رفتار تغییر شکل مومسان شیشه فلز حجمی آلیاژ . فصلنامه علمی پژوهشی مواد پیشرفته در مهندسی 39(3): 140 -129.
[20] Chen G, Lu L, Ren C, Ge X (2018) Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy. J Alloys Compd 765: 569-585.
[21] Huang CP, Wang M, Zhu KY, Perlade A, Huang MX (2023) Carbon-induced negative strain-rate sensitivity in a quenching and partitioning steel. Acta Mater 255: 119099.
[22] Salvado FC, Teixeira-Dias F, Walley SM, Lea LJ, Cardoso JB (2017) A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Prog Mater Sci 88: 186-231.
[23] Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9): 963-980.
[24] Bridgman PW (1937) Flow phenomena in heavily stressed metals. J Appl Phys 8: 328-336.
[25] Edalati K, Horita Z, Langdon TG (2009) The significance of slippage in processing by high-pressure torsion. Scripta Mater 60: 9-12.
[26] Bachmaier A, Hafok M, Pippan R (2010) Rate independent and rate dependent structural evolution during severe plastic deformation. Mater Trans 51: 8-13.
[27] Kawasaki M, Ahn B, Langdon TG (2010) Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater 58: 919-930.
[28] Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A 528: 3601-3608.
[29] Edalati K, Wang Q, Enikeev NA, Peters L-J, Zehetbauer MJ, Schafler E (2022) Significance of strain rate in severe plastic deformation on steady-state microstructure and strength. Mater Sci Eng: A 859: 144231.
[30] Edalati K, Miresmaeili R, Horita Z, Kanayama H, Pippan R (2011) Significance of temperature increase in processing by high-pressure torsion.
Mater Sci Eng A 528: 7301-7305.
[31] Hockett JE, Sherby OD (1975) Large strain deformation of polycrystalline metals at low homologous temperatures. J Mech Phys Solid 23: 87-98.
[32] Eurocode 3, Table of design material properties for structural steel, https://eurocodeapplied.com/design/en1993/steel-design-properties
[33] Cao J, Li F-g, Ma X-k, Sun Z-k (2017) Tensile stress–strain behavior of metallic alloys. Trans Nonferrous Met Soc China 27: 2443-2453.
[34] Gonoring TB, Salustre MG de M, Caetano GA, Martins JBR, Orlando MTD (2022) A constitutive model for the uniaxial tensile plastic behavior of metals based on the instantaneous strain-hardening exponent. J Mater Res Technol 20: 2421-2443.
]35[ سرادار م، باستی ع، زعیمی م (1393) بررسی عددی اثر نرخ کرنش بر پیشبینی آسیب به کمک معیار حدشکلدهی دینامیکی در فرایند شکلدهی ورقهای فلزی با سرعت بالا. مجله مهندسی مکانیک مدرس 14(16): 212-222.
[36] Huh H, Lim JH, Park SH (2009) High speed tensile test of steel sheets for the stress-strain curve at the intermediate straine rate. Inter J Auto Technol 10(2): 195−204.
[37] Jantasorn P, Thamma U (2022) Effects of Angle and Rate of Twist via Pre-Torsional Deformation on Tensile Properties and Hardness of Hot-Rolled, Low-Alloy Steel Rods. Trends Sci 19(17): 5770.
[38] Senthilkumar T, Ajiboye TK (2012) Effect of Heat Treatment Processes on the Mechanical Properties of Medium Carbon Steel. J Min Mater Charac Engin 11(2): 143-152.
[39] Manjoine MJ, Pittsburgh E (1944) Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel. J Appl Mech 11(4): A211-A218.
[40] van den Beukel A (1975) Theory of the effect of dynamic strain aging on mechanical properties. physica status solidi 30(1): 197-206.
[41] Jonas JJ, Montheillet F, Toth LS, Ghosh C (2014) Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data. Mater Sci Eng A 591: 9–17.
[42] Yan SL, Yang H, Li HW Li, Yao X (2016) Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: Mechanism analysis and modeling. J Alloys Compd 688: 776-786.
[43] Picu RC (2004) A mechanism for the negative strain-rate sensitivity of dilute solid solutions. Acta Mater 52: 3447–3458.
[44] Yan N, Li Z, Xu Y, Meyers MA (2021) Shear localization in metallic materials at high strain rates. Prog Mater Sci 119: 100755.
[45] Mesarovic S (1995) Dynamic Strain Aging and Plastic Instabilities. J Mech Phys Solids 43(5):671–701.
[46] Stüwe HP, Les P (1998) Strain rate sensitivity of flow stress at large strains. Acta Mater. 46(18): 6375-6380.
[47] Kahnooj SAH, Vaseghi M, Sameezadeh M (2022) Softening and Microstructure Evolution of Pure Copper Disks Processed by High Pressure Torsion. Met Mater Int 28: 2646–2651.
[48] Eleiche ASM (1982) Strain-rate History and Temperature Effects on the Torsional-shear Behavior of a Mild Steel. Exp. Mech 22: 285-294.
[49] Ghosh AK (2007) On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater Sci Eng A 463: 36-40.
[50] Chen H, Chen Z, Liu J, Wu Y, Dan C, Zhong S, Wang H, Bréchet Y (2021) Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging. Materialia 18: 101137.
[51] Dieter GE (1988) Mechanical Metallurgy- SI Metric ed. McGraw-Hili Book Company (UK) Limited, London.
[52] Segal VM (2019) Equivalent and effective strains during severe plastic deformation (SPD). Phi Mag Let 98(11): 511-520.
[53] Johnson W, Mellor PB (1983) Engineering-plasticity . Ellis Horwood Limited, England.
[54] Beer FP, Johnston ER, Dewolf JT (2012) Mechanics of materials. 6th ed., McGraw-Hill Companies Inc. p 147.
[55] Jonas JJ, Ghosh C, Toth LS (2014) The equivalent strain in high pressure torsion. Mater Sci Eng A 607: 530–535.
[56] Degtyarev MV, Chashchukhina TI, Voronova LM, Patseov AM, Pilygin VP (2007) Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion. Acta Mater 55: 6039-6050.