[1] Abdulkadhim, A., mejbel Abed, I., & mahjoub Said, N. (2021). An exhaustive review on natural convection within complex enclosures: Influence of various parameters. C.J of P, 74, 365-388..
[2] Kishor, V., Belekar, A., Srivastava, A., & Singh, S. (2022). Simultaneous mapping of buoyancy-induced flow and temperature fields using thermographic PIV. E. H. T, 1-21.
[3] Turkyilmazoglu, M. (2022). Exponential nonuniform wall heating of a square cavity and natural convection. C.J of P, 77, 2122-2135.
[4] Harish, R., & Sivakumar, R. J. P. T. (2021). Effects of nanoparticle dispersion on turbulent mixed convection flows in cubical enclosure considering Brownian motion and thermophoresis. P.T, 378, 303-316..
[5] Bawazeer, S., Mohamad, A. A., & Oclon, P. (2019). Natural convection in a differentially heated enclosure filled with low Prandtl number fluids with modified lattice Boltzmann method. International J. of H.&MT, 143, 118562.
[6] Prasopchingchana, U. (2022). Direct numerical simulation of natural convection in a square cavity at high Rayleigh numbers via the Lagrange interpolating polynomial scheme. Int. J. T. S., 172, 107276.
[7] Seo, Y. M., Luo, K., Ha, M. Y., & Park, Y. G. (2020). Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. Int. J. H.&MT, 152, 119564.
[8] Chakraborty, P., & Basu, S. (2021). Structural, electrical and magnetic properties of Er doped YCrO3 nanoparticles. M.C& P, 259, 124053.
[9] Jahanshahi, M., Hosseinizadeh, S. F., Alipanah, M., Dehghani, A., & Vakilinejad, G. R. (2010). Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid. Int commun. in H.&MT, 37(6), 687-694.
[10]Aminossadati, S. M., & Ghasemi, B. (2011). Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source–sink. Int. Commun. in H.&MT, 38(5), 672-678.
[11]Sheikhzadeh, G. A., & Nazari, S. (2013). Numerical study of natural convection in a square cavity filled with a porous medium saturated with nanofluid.
[12] Bourantas, G. C., Skouras, E. D., Loukopoulos, V. C., & Burganos, V. N. (2014). Heat transfer and natural convection of nanofluids in porous media. Europ. J. M.-B/Fluids, 43, 45-56.
[13] Heidary, H., Hosseini, R., Pirmohammadi, M., & Kermani, M. J. (2015). Numerical study of magnetic field effect on nano-fluid forced convection in a channel. J. M.& M.M, 374, 11-17.
[14] Mousavi, S. V., Sheikholeslami, M., & Gerdroodbary, M. B. (2016). The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exch.. Chem. Eng.R & D, 113, 112-124.
[15] Wang, T., Huang, Z., & Xi, G. (2017). Entropy generation for mixed convection in a square cavity containing a rotating circular cylinder using a local radial basis function method. Int. J. H.&MT, 106, 1063-1073.
[16] Selimefendigil, F., Öztop, H. F., & Chamkha, A. J. (2017). Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int. Commun. in H.&MT, 87, 40-51.
[17] Alsabery, A. I., Tayebi, T., Kadhim, H. T., Ghalambaz, M., Hashim, I., & Chamkha, A. J. (2021). Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J. of A.R., 30, 63-74.
[18] Hossain, R., Azad, A. K., Hasan, M. J., & Rahman, M. M. (2022). Thermophysical properties of Kerosene oil-based CNT nanofluid on unsteady mixed convection with MHD and radiative heat flux. Engineering Science and Technology, an Int. J., 35, 101095.
[19] Cheng, T. S., & Liu, W. H. (2010). Effect of temperature gradient orientation on the characteristics of mixed convection flow in a lid-driven square cavity. C. & F, 39(6), 965-978.