بهبود دینامیک خودرو به روش کنترل مقاوم توسعه داده‌شده

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این مقاله، بهبود پایداری خودرو بر اساس ترمزهای تفاضلی و با استفاده از یک منطق کنترل مقاوم توسعه داده‌شده مورد توجه قرارگرفته است. سیستم ترمزی خودرو درصورتی‌که به‌صورت تفاضلی عمل نماید، می‌تواند، به‌واسطه لختی خودرو در حال حرکت، گشتاورهای قابل توجهی را تولید نماید و در شرایط اضطراری که خودرو در حال انحراف و از دست دادن پایداری است، مؤثر واقع گردد؛ لذا طراحی سیستم کنترلی به دو سطح بالا برای تولید گشتاور مورد نیاز و سطح پایین جهت اختصاص گشتاورهای ترمزی به هر چرخ شکل می‌گیرد. در سطح بالا، طراحی کنترل‌کننده توسط تئوری فیدبک کمی توسعه داده‌شده صورت می‌پذیرد. مبانی این کنترل‌کننده طوری است که با استفاده از مدل خطی خودرو، تمامی عدم قطعیت‌های موجود را مورد مطالعه قرار داده و سپس با استفاده از روش تاگوچی، تأثیرگذارترین پارامترها تعیین می‌شوند و پس از آن به‌وسیله یک پیش فیلتر و جبران ساز، کنترل مدل غیر خطی انجام می‌گیرد. پس از تولید گشتاور تصحیح، گشتاورهای ترمزی توسط یک سری قوانین ساده تولید و به خودرو معرفی می‌شوند. جهت شبیه‌سازی جامع دینامیک خودرو از نرم‌افزار کارسیم، استفاده شده است. برای تصریح عملکرد مناسب کنترل مقاوم، یک مانور موج سینوسی برای جاده با اصطکاک پایین نیز در نظر گرفته می‌شود تا کارابودن بودن منطق مورد استفاده‌شده نشان داده شود.

کلیدواژه‌ها

موضوعات


[1] Shibahata Y, Shimada K, Tomari T (1993) Improvement of vehicle maneuverability by direct yaw moment control. Vehicle Syst Dyn 22(5-6): 465-481
[2] Abe M, Ohkubo N, Kanoh Y (1994) Effects of direct yaw moment control on active safety of vehicle handling. Ingénieurs de l'automobile (692): 53-56
[3] Van Zanten A, Erhardt R, Pfaff G (1995) The vehicle dynamics control system of Bosch. in International Congress & Exposition. SAE: Detroit, MI, USA.
[4] Nagai M, Hirano Y, Yamanaka S (1997) Integrated control of active rear wheel steering and direct yaw moment control. Vehicle Syst Dyn 27(5-6): 357-370
[5] Tahami F, Farhangi S, Kazemi R (2004) A fuzzy logic direct yaw-moment control system for all-wheel-drive electric vehicles. Vehicle Syst Dyn 41(3): 203-221
[6] Bin L, Daofei L, Fan Y (2007) Vehicle yaw stability control using the fuzzy-logic controller. in Vehicular Electronics and Safety. Vehicular Electronics and Safety, 2007. ICVES. IEEE International Conference on, Beijing.
[7] Wei Z, Guizhen Y, Jian W, Tianshu S, Xiangyang X (2009) Self-tuning fuzzy PID applied to direct yaw moment control for vehicle stability. in Electronic Measurement & Instruments, 2009. ICEMI'09. 9th International Conference on IEEE.
[8] Yoshioka T, Adachi T, Butsuen T, Okazaki H, Mochizuki H (1999) Application of sliding-mode theory to direct yaw-moment control. JSAE Review 20(4): 523-529.
[9] Esmailzadeh E, Goodarzi A, Vossoughi GR (2003) Optimal yaw moment control law for improved vehicle handling. Mechatronics 13(7): 659-675.
[10] Yoo S, You S-H, Jo J, Kim D, Lee K I (2006) Optimal integration of active 4 wheel steering and direct yaw moment control. IFAC Proceedings Volumes 39(12): 603-608.
[11] Mashadi B, Goharimanesh M, Gharib MR, Majidi M (2010) Quantitative feedback theory controller design for vehicle stability enhancement. in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, July 12, 2010 - July 14, 2010. Istanbul, Turkey: American Society of Mechanical Engineers
[12] Horowitz I (1982) Quantitative feedback theory. IEE Proc-D 129(6): 215-226
[13] Clough BT, Horowitz I, Houpis C (1986) Robust control design for a short  take-off and landing (STOL) aircraft using quantitative feedback theory. in Proceedings of the IEEE 1986 National Aerospace and Electronics Conference, NAECON 1986. Dayton, OH, USA: IEEE.
[14] Houpis CH (1987) Quantitative feedback theory (QFT)-technique for designing multivariable control systems. in AFWAL-TR-86-3107. DTIC Document.
[15] Wang G, Horowitz I, Wang S, Chen C (1988) A control design for a tracked vehicle with implicit nonlinearities using quantitative feedback theory. in Decision and Control, 1988., Proceedings of the 27th IEEE Conference on IEEE.
[16] Hamilton S, Horowitz I, Houpis CH (1989) QFT digital controller for an unmanned research vehicle (URV). in Proceedings of the 1989 American Control Conference, June 21, 1989 - June 23, 1989. Pittsburgh, PA, USA: Publ by IEEE.
[17] Chait Y, Yaniv O (1993) Multi‐input/single‐output computer‐aided control design using the quantitative feedback theory. Int J Robust Nonlin 3(1): 47-54.
[18] Borghesani C, Chait Y, Yaniv O (1994) Quantitative Feedback Theory Toolbox for Use with MATLAB®: User's Guide. MathWorks, Incorporated.
[19] Nataraj PSV (1994) A MATLAB toolbox for QFT-Based synthesis of linear. nonlinear lumped and linear distributed systems. in Computer-Aided Control System Design,. Tucson, AZ , USA IEEE.
[20] Nordgren R, Nwokah O, Franchek M (1994) New formulations for quantitative feedback theory. Int J Robust Nonlin 4(1): 47-64.
[21] Henderson DK, Hess RA (1997) Approximations for quantitative feedback theory designs. J Guid Control Dynam 20(4): 828-831.
[22] Chen W, Balance DJ (1998) Automatic loop-shaping in QFT using genetic algorithms. in Proc. of 3rd Asia-Pacific Conf. on Cont. & Meas. 
[23] Slicker JM, Loh  RNK (1996) Design of robust vehicle launch control system. IEEE T Contr Syst T 4(4): 326-335.
[24] Thompson DF, Kremer GG (1999) Parametric model development and quantitative feedback design for automotive torque converter bypass clutch control. Professional Engineering Publishing Ltd.
[25] Liberzon A, Rubinstein D, Gutman PO (2001) Active suspension for single wheel station of off-road track vehicle. Int J Robust Nonlin 11(10): 977-999.
[26] Rajapakse NI, Happawana GS, Hurmuzlu Y (2007) Suppression of heavy-truck driver-seat vibration using sliding-mode control and quantitative feedback theory. P I Mech Eng I-J Sys 221(5): 769-779.
[27] Zapateiro M, Pozo F, Karimi HR, Luo N (2011) Semiactive control methodologies for suspension control with magnetorheological dampers. IEEE-ASME T Mech 17(2): 370-380.
[28] Zhang J, Kim J, Xuan D, Kim Y (2011) Design of Active Front Steering (AFS) system with QFT control. Int J Comput Appl T 41(3-4): 236-245.
[29] Meng L, Diao F (2012) QFT fractional-order controllers for unstable plants with only one unstable pole. in Control Conference (CCC), 2012 31st Chinese IEEE.
[30] Garcia-Sanz M, Houpis CH, (2012) Wind energy systems: Control engineering design. CRC Press.
[31] Goodarzi A, Esmailzadeh E (2003) Direct yaw moment controller design for vehicle dynamic control system. in IASTED Int. Conf., Canada. 
[32] Riekert P, Schunck TE (1940) Zur Fahrmechanik des gummibereiften Kraftfahrzeugs. Arch Appl Mech 11(3): 210-224.
[33] Pacejka H, (2005) Tyre and Vehicle Dynamics. 642: Elsevier.
[34] CARSIM. Available from: http://www.carsim.com/.
[35] Benekohal R, Treiterer J (1988) CARSIM: Car-following model for simulation of traffic in normal and stop-and-go conditions. Transportation Research Record (1194).
[36] Goharimanesh M, Akbari AA (2015) Optimum parameters of nonlinear integrator using design of experiments based on Taguchi method. J Appl Mech-T ASME 46(2): 233-241
[37] Goharimanesh M, Akbari AA, Akbarzadeh AR (2014) More efficiency in fuel consumption using gearbox optimization based on Taguchi method. J Ind Eng Int 10(2): 1-8.