طراحی و پیاده‌سازی کنترل فازی دوربین رباتیک جهت ردگیری هدف

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشگاه صنعتی شاهرود

2 گروه همت

چکیده

این مقاله به طراحی و پیاده‌سازی کنترل فازی دوربین رباتیک برای ردگیری هدف می‌پردازد. دوربین رباتیک که از بازوی رباتیک و دوربین تشکیل شده­است هدف متحرک را در مرکز فریم تصویر قرار می‌دهد. طرح کنترل‌کننده پیشنهادی از راهبرد کنترل ولتاژ استفاده می‌نماید و خطای ردگیری فضای کار را توسط سیستم­های فازی به خطای ردگیری فضای مفصلی تبدیل می‌نماید. این طرح کنترلی که برای نخستین بار در عمل اجرا شده­است مستقل از مدل دینامیکی ربات بوده و نسبت به عدم قطعیت‌های اطلاعات تصویر نیز مقاوم است. روش کنترل پیشنهادی ساده‌تر و کم محاسبه‌تر از روش مرسوم کنترل ربات است که مبتنی بر راهبرد کنترل گشتاور است. همچنین جهت ردگیری جسم در فریم تصویر، از ترکیب الگوریتم ردگیری مرکز و الگوریتم ردگیری حباب استفاده می‌شود. نتایج تجربی روی دوربین رباتیک دو-رابط مجهز به موتورهای جریان مستقیم مغناطیس دائم نشان می‌دهد که کنترل پیشنهادی در مقایسه با کنترل تناسبی-مشتقی عملکرد بهتری دارد.

کلیدواژه‌ها

موضوعات


[1] Abdul Kareem SA, Akmeliawati R, Muhida R (2011) Design of a light tracking system using machine vision technique. 4th Int. Conf. on Mechatronics ICOM, Malaysia.

[2] Betke M, Haritaoglu E, Davis SS (1996) Multiple vehicle detection and tracking in hard real-time. Proc. Intelligent Vehicles Symposium: 351-356.

[3] DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE transaction on pattern analysis and machine intelligence: 24(2): 237–264.

[4] Shirai Y, Inoue H (1973) Guiding a robot by visual feedback in assembling tasks. Pattern Recognition 5: 99–108.

[5] Bourquardez O, Mahony R, Guenard N, Chaumette F, Hamel T, Eck L (2009) Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE transaction on robotics 25(3): 743–750.

[6] Hashimoto K (1993) Visual servoing. World Scientific 7: 1–127.

[7] Chaumette F, Hutchinson S (2006) Visual servo control, part I: Basic approaches IEEE Robotics and Automation Magazine 13(4): 82–90.

[8] Chaumette F, Hutchinson S (2007) Visual servo control, Part II: Advanced approaches. IEEE Robotics and Automation Magazine. 14(1): 109–118.

[9] Kragic D, Christensen HI (2002) Survey on visual servoing for manipulation. Computational Vision and Active Perception Laboratory, Fiskartorpsv, 15.

[10] Ganglo JA, Mathelin MF (1999) Visual servoing of a 6 DOF manipulator for unknown 3D profile following. IEEE transaction on robotics and automation 18(4): 511–520.

[11] Fateh MM (2008) On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5): 702–712.

[12] Fateh MM (2010) Robust voltage control of electrical manipulators in task-space, International Journal of Innovative Computing, Information and Control 6(6): 2691–2700.

[13] Fateh MM (2010) Robust fuzzy control of electrical manipulators. Journal of Intelligent Robotic Systems 60(3-4): 415–434.

[14] Fateh MM (2012) Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn 67(2): 1525–1537.

[15] Fateh MM (2012) Nonlinear control of electrical flexible joint robots. Nonlinear Dyn 67(4): 2549–2559.

[16] Moradi Zirkohi M, Fateh MM, Aliyari Shoorehdeli M (2013) Type-2 fuzzy control of a flexible-joint robot using voltage control strategy. International Journal of Automation and Computing 10(3): 242–255,

[17] Moallem P Memarmoghaddam A, Ashourian M (2007) Robust and fast tracking algorithm in video sequences by adaptive window sizing using a novel analysis on spatiotemporal gradient powers. Int J Circuit Sys Computers 16(2): 305–317.

[18] Wolfe W, Zissis G (1985) The Infrared Handbook. SPIE Press.

[19] Torres S, Mendez JA, Acosta L, Becerra VM (2007) On improving the performance in robust controllers for robot manipulators with parametric disturbances. Control Engineering Practice 15(5): 557–566.

[20] Spong MW (1992) On the robust control of robot manipulators. IEEE Trans. Automatic Control 37(11): 1782–1786.

[21] Chiu CS, LianKY, Wu TC (2004) Robust adaptive motion/force tracking control design or uncertain constrained robot manipulator. Automatica 40(12): 2111–2119.

[22] Tang Y, Sun F, Sun Z (2006) Neural network control of flexible-link manipulators using sliding mode. Neurocomputing 70(1): 288–295.

[23] Purwar S, Kar IN, Jha AN (2005) Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. Fuzzy Sets and Systems 152(3): 651–664.

[24] Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modelling and control. New York, John Wiley & Sons.

[25] Wang D (1998) Unsupervised video segmentation based on water-sheds and temporal tracking. Trans. Circuit Sys. Video Technol 8(5): 539–546.

[26] Wang Y, Van Dyck RE, Doherty JF (2000) Tracking moving objects in video sequences. In Conference on Information Sciences and Systems 2: 24–29.

[27] Amidi O, Kanade T, Fujita K (1999) A visual odometer for autonomous helicopter flight. Robotics and Autonomous Systems 28(2): 185–193.

[28] Lindeberg T (1993) Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int J Computer Vision 11(3): 283–318.

[29] Wang LX (1997) A course in fuzzy systems and control. Prentice-Hall International, Inc, Upper Saddle River, NJ, USA.