عرب, علی اصغر, فاتح, محمد مهدی, یزدان پرست, سید محمد رضا. (1393). طراحی و پیادهسازی کنترل فازی دوربین رباتیک جهت ردگیری هدف. مکانیک سازه ها و شاره ها, 4(1), 1-10. doi: 10.22044/jsfm.2014.252
علی اصغر عرب; محمد مهدی فاتح; سید محمد رضا یزدان پرست. "طراحی و پیادهسازی کنترل فازی دوربین رباتیک جهت ردگیری هدف". مکانیک سازه ها و شاره ها, 4, 1, 1393, 1-10. doi: 10.22044/jsfm.2014.252
عرب, علی اصغر, فاتح, محمد مهدی, یزدان پرست, سید محمد رضا. (1393). 'طراحی و پیادهسازی کنترل فازی دوربین رباتیک جهت ردگیری هدف', مکانیک سازه ها و شاره ها, 4(1), pp. 1-10. doi: 10.22044/jsfm.2014.252
عرب, علی اصغر, فاتح, محمد مهدی, یزدان پرست, سید محمد رضا. طراحی و پیادهسازی کنترل فازی دوربین رباتیک جهت ردگیری هدف. مکانیک سازه ها و شاره ها, 1393; 4(1): 1-10. doi: 10.22044/jsfm.2014.252
طراحی و پیادهسازی کنترل فازی دوربین رباتیک جهت ردگیری هدف
این مقاله به طراحی و پیادهسازی کنترل فازی دوربین رباتیک برای ردگیری هدف میپردازد. دوربین رباتیک که از بازوی رباتیک و دوربین تشکیل شدهاست هدف متحرک را در مرکز فریم تصویر قرار میدهد. طرح کنترلکننده پیشنهادی از راهبرد کنترل ولتاژ استفاده مینماید و خطای ردگیری فضای کار را توسط سیستمهای فازی به خطای ردگیری فضای مفصلی تبدیل مینماید. این طرح کنترلی که برای نخستین بار در عمل اجرا شدهاست مستقل از مدل دینامیکی ربات بوده و نسبت به عدم قطعیتهای اطلاعات تصویر نیز مقاوم است. روش کنترل پیشنهادی سادهتر و کم محاسبهتر از روش مرسوم کنترل ربات است که مبتنی بر راهبرد کنترل گشتاور است. همچنین جهت ردگیری جسم در فریم تصویر، از ترکیب الگوریتم ردگیری مرکز و الگوریتم ردگیری حباب استفاده میشود. نتایج تجربی روی دوربین رباتیک دو-رابط مجهز به موتورهای جریان مستقیم مغناطیس دائم نشان میدهد که کنترل پیشنهادی در مقایسه با کنترل تناسبی-مشتقی عملکرد بهتری دارد.
[1] Abdul Kareem SA, Akmeliawati R, Muhida R (2011) Design of a light tracking system using machine vision technique. 4th Int. Conf. on Mechatronics ICOM, Malaysia.
[2] Betke M, Haritaoglu E, Davis SS (1996) Multiple vehicle detection and tracking in hard real-time. Proc. Intelligent Vehicles Symposium: 351-356.
[3] DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE transaction on pattern analysis and machine intelligence: 24(2): 237–264.
[4] Shirai Y, Inoue H (1973) Guiding a robot by visual feedback in assembling tasks. Pattern Recognition 5: 99–108.
[5] Bourquardez O, Mahony R, Guenard N, Chaumette F, Hamel T, Eck L (2009) Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE transaction on robotics 25(3): 743–750.
[6] Hashimoto K (1993) Visual servoing. World Scientific 7: 1–127.
[7] Chaumette F, Hutchinson S (2006) Visual servo control, part I: Basic approaches IEEE Robotics and Automation Magazine 13(4): 82–90.
[8] Chaumette F, Hutchinson S (2007) Visual servo control, Part II: Advanced approaches. IEEE Robotics and Automation Magazine. 14(1): 109–118.
[9] Kragic D, Christensen HI (2002) Survey on visual servoing for manipulation. Computational Vision and Active Perception Laboratory, Fiskartorpsv, 15.
[10] Ganglo JA, Mathelin MF (1999) Visual servoing of a 6 DOF manipulator for unknown 3D profile following. IEEE transaction on robotics and automation 18(4): 511–520.
[11] Fateh MM (2008) On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5): 702–712.
[12] Fateh MM (2010) Robust voltage control of electrical manipulators in task-space, International Journal of Innovative Computing, Information and Control 6(6): 2691–2700.
[13] Fateh MM (2010) Robust fuzzy control of electrical manipulators. Journal of Intelligent Robotic Systems 60(3-4): 415–434.
[14] Fateh MM (2012) Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn 67(2): 1525–1537.
[15] Fateh MM (2012) Nonlinear control of electrical flexible joint robots. Nonlinear Dyn 67(4): 2549–2559.
[16] Moradi Zirkohi M, Fateh MM, Aliyari Shoorehdeli M (2013) Type-2 fuzzy control of a flexible-joint robot using voltage control strategy. International Journal of Automation and Computing 10(3): 242–255,
[17] Moallem P Memarmoghaddam A, Ashourian M (2007) Robust and fast tracking algorithm in video sequences by adaptive window sizing using a novel analysis on spatiotemporal gradient powers. Int J Circuit Sys Computers 16(2): 305–317.
[18] Wolfe W, Zissis G (1985) The Infrared Handbook. SPIE Press.
[19] Torres S, Mendez JA, Acosta L, Becerra VM (2007) On improving the performance in robust controllers for robot manipulators with parametric disturbances. Control Engineering Practice 15(5): 557–566.
[20] Spong MW (1992) On the robust control of robot manipulators. IEEE Trans. Automatic Control 37(11): 1782–1786.
[22] Tang Y, Sun F, Sun Z (2006) Neural network control of flexible-link manipulators using sliding mode. Neurocomputing 70(1): 288–295.
[23] Purwar S, Kar IN, Jha AN (2005) Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. Fuzzy Sets and Systems 152(3): 651–664.
[24] Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modelling and control. New York, John Wiley & Sons.
[25] Wang D (1998) Unsupervised video segmentation based on water-sheds and temporal tracking. Trans. Circuit Sys. Video Technol 8(5): 539–546.
[26] Wang Y, Van Dyck RE, Doherty JF (2000) Tracking moving objects in video sequences. In Conference on Information Sciences and Systems 2: 24–29.
[27] Amidi O, Kanade T, Fujita K (1999) A visual odometer for autonomous helicopter flight. Robotics and Autonomous Systems 28(2): 185–193.
[28] Lindeberg T (1993) Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int J Computer Vision 11(3): 283–318.
[29] Wang LX (1997) A course in fuzzy systems and control. Prentice-Hall International, Inc, Upper Saddle River, NJ, USA.