تحلیل کمانش میکرو صفحه مستطیلی تابعی مدرج در محیط حرارتی بر اساس تئوری تغییر شکل برشی نمایی با بکارگیری تئوری تنش کوپل اصلاح شده

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشیار، مهندسی مکانیک ، دانشگاه اراک ، اراک. دانشیار، مهندسی مکانیک ، پژوهشکده علوم و فناوریهای نانو، دانشگاه اراک، ایران.

2 کارشناسی ارشد، مهندسی مکانیک ، دانشگاه اراک ، اراک

10.22044/jsfm.2019.6612.2550

چکیده

هدف این مقاله مطالعه کمانش میکرو صفحه ‌های مستطیلی تابعی مدرج توانی است. جهت به دست آوردن بار بحرانی کمانش بی‌بعد میکرو صفحه تابعی مدرج از تئوری تنش کوپل اصلاح شده بر اساس تئوری تغییر شکل برشی نمایی استفاده شده است. در تئوری‌ تغییر شکل برشی نمایی از توابع نمایی در راستای ضخامت، جهت در نظر گرفتن تأثیر اینرسی دورانی و تغییرشکل برشی عرضی استفاده شده است. برای به دست آوردن بار بحرانی کمانش تمام شرایط مرزی، معادلات حرکت سیستم با به‌کارگیری روش ریلی ریتز بر اساس تئوری تنش کوپل اصلاح شده به دست آمده است که این تئوری شامل یک پارامتر مقیاس طول می‌باشد. دما در صفحه ی ورق ثابت فرض شده است و فقط در راستای ضخامت تغییر می کند. خواص مواد وابسته به دما فرض شده است و به طور پیوسته در راستای ضخامت بر اساس قانون پراکندگی قدرت در عبارات حجم شکست عناصر تشکیل دهنده تغییر می کند. در نهایت، تأثیر پارامتر‌های گوناگون از قبیل: اندیس توانی، نسبت طول به عرض (a/b)، نسبت طول به ضخامت (a/h) و پارامتر مقیاس طول بر بار بحرانی کمانش بی‌بعد میکرو ورق تابعی مدرج مستطیلی ارائه شده است.

کلیدواژه‌ها

موضوعات


[1] Cheung YK, Zhou D (2003) Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions. J Sound Vib 260(4): 693-709.‏

[2] Junhong P, Siegmund T, Mongeau L (2003) Analysis of the flow-induced vibrations of viscoelastically supported rectangular plates. J Sound Vib 261(2): 225-245.‏

[3] Xiang Y, Wei GW (2004) Exact solutions for buckling and vibration of stepped rectangular Mindlin plates. Int J Solids Struct 41(1): 279-294.‏‏

[4] Nieves FJ, Gascón F, Bayón A (2004) Natural frequencies and mode shapes of flexural vibration of plates: Laser-interferometry detection and solutions by Ritz's method. J Sound Vib 278(3): 637-655.‏

[5] Yunshan GWW, Xiang Y (2005) DSC‐Ritz method for the free vibration analysis of Mindlin plates. Int J Numer Meth Eng 62(2): 262-288.

[6] Xiang Y, Wang CM, Liew KM, Kitipornchai S (1993) Mindlin plate buckling with pre buckling in-plane deformation. J Eng Mech 119(1): 1-18.‏

[7] Matsunaga H (2000) Vibration and stability of thick plates on elastic foundations. J Eng Mech 126(1): 27-34.‏‏

[8] Hosseini-Hashemia Sh, Khorshidi K, Amabilibi M (2008) Exact solution for linear buckling of rectangular Mindlin plates. J Sound Vib 315: 318-342.

[9] Sayyad AS, Ghugal YM (2012) Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory. Appl Comput Mech 6: 65-82.

[10] Khorshidi K, Farhadi S (2013) Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid. Compos struct 104: 176-186.

[11] Dozio L (2011) On the use of the Trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates. Thin Wall Struct 49(1): 129-144.

[12] Tounsi A, Houari MSA, Benyoucef S, Bedia EAA (2013) A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp Sci Technol 24(1): 209-220.

[13] Alinaghizade F, Shariati M, Fish J (2017) Bending analysis of size-dependent functionally graded annular sector microplates based on modified couple stress theory. Appl Math Model 1(44): 540-556.

[14] Kharde SB, Mahale AK, Bhosale KC, Thorat SR (2013) Flexural vibration of thick isotropic plates by using exponential shear deformation theory. IJETAE 3(1): 369-374.

[15] Alinaghizade F, Shariati M (2015) Buckling analysis of variable thickness radially functionally graded annular sector plates resting on two-parameter elastic foundation by GDQ method. Int J Appl Mech 7(06): 1550083.

[16] Hosseini-Hashemi Sh, Taher HRD, Akhavan H, Omidi M (2010) Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl Math Model 34(5): 1276-1291.

[17] Khorshidi K, Fallah A (2016) Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory. Int J Mech Sci 113: 94-104.

[18] Khorshidi K, Asgari T, Fallah A (2016) Free vibrations analysis of functionally graded rectangular na-noplates based on nonlocal exponential shear deformation theory. Mech Adv Compos Struct 2: 79-93.

[19] Alinaghizade F, Kadkhodayan M (2013) Investigation of nonlinear bending analysis of moderately thick functionally graded material sector plates subjected to thermomechanical loads by the GDQ method. J Eng Mech 140(5): 04014012.

[20] Kim YW (2005) Temperature dependent vibration anaylsis of functionally graded rectangular plates. J Sound Vib 284(3): 531-549.

[21] Li Q, Iu VP, Kou KP (2009) Three-dimensional vibration analysis of functionally graded material in thermal environment. J Sound Vib 324(3): 733-750.

[22] Adineh M, Kadkhodayan M (2017) Three dimentional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation. Composite Part B: Engineering 125: 227-240.

[23] Natarajan S, Chakraborty Thangavel M, Bordas S, Rabczuk T (2012) Size dependent free flexural vibration behavior of functionally graded nanoplates. Comp Mater Sci 65: 74-80.

[24] Erdogan F, Delate F (1983) The crack problem in a specially orthotropic shell with double curvature. Eng Fract Mech 18: 529-544.

[25] Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos struct 95: 142-153

[26] Khorshidi K, Fallah A (2017) Free vibration analysis of size-dependent, functionally graded, rectangular nano/micro-plates based on modified nonlinear couple stress deformation plate theories. Mech Adv Compos Struct 4: 127-137.